Effect of a hydrocarbon derivative on the growth of the fungus Pleurotus ostreatus

Authors

  • Zanetta-Donoso Cristóbal Facultad de Ciencias de la Vida y Tecnológicas, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador.
  • Espinoza-Zambrano Paulina Facultad de Ciencias de la Vida y Tecnológicas, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador.
  • Ormaza-Lucas Mirabella Facultad de Ciencias de la Vida y Tecnológicas, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador.
  • Mendoza-García Gregorio Facultad de Ciencias de la Vida y Tecnológicas, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador. Facultad de Ciencias Básicas, Universidad Técnica de Manabí. Portoviejo, Ecuador.
  • Velásquez-Ferrín Abrahan Facultad de Ciencias de la Vida y Tecnológicas, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador. Facultad de Ciencias Informáticas, Universidad Técnica de Manabí. Portoviejo, Ecuador.

DOI:

https://doi.org/10.56124/allpa.v7i14.0078

Keywords:

Pleurotus ostreatus, bioremediation, soil treatment, hydrocarbons, organic pollutants

Abstract

Soils are subject to anthropogenic contamination derived from oil exploitation; over time, different conventional and alternative strategies have been studied to eliminate this class of contaminants. The objective of this study was to collect preliminary information on the growth of the oyster mushroom (Pleurotus ostreatus) in the presence of fuel with alcohol, one of Ecuador's most used petroleum derivatives. Parallel to this, the removal of total hydrocarbons from petroleum (HTP) in the substrate used. For the study, the cultivation time (20 and 40 days) and the fuel concentration (20 and 40%) were considered as study factors, in addition to quantifying the number of fungi, their mass, and their cap diameter, at the end the obtained a little significant between the treatments and an excellent tolerance to the presence of the contaminant that is evident in the proportional growth of the fungi.

Keywords: Pleurotus ostreatus, bioremediation, soil treatment, hydrocarbons, organic pollutants.

Downloads

Download data is not yet available.

References

Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environmental Management, 60(4), 758–783. https://doi.org/10.1007/s00267-017-0896-2

Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., & Wösten, H. A. B. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials & Design, 161, 64–71. https://doi.org/10.1016/J.MATDES.2018.11.027

Arjoon, A., Olaniran, A. O., & Pillay, B. (2013). Co-contamination of water with chlorinated hydrocarbons and heavy metals: Challenges and current bioremediation strategies. International Journal of Environmental Science and Technology, 10(2), 395–412. https://doi.org/10.1007/s13762-012-0122-y

Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques– classification based on site of application: principles, advantages, limitations, and prospects. World Journal of Microbiology and Biotechnology 2016 32:11, 32(11), 1–18. https://doi.org/10.1007/S11274-016-2137-X

Brugnari, T., Pereira, M.G., Bubna, G.A., de Freitas, E.N., Contato, A.G., Corrêa, R.C.G., Castoldi, R., de Souza, C.G.M., Polizeli, M. de L.T. de M., Bracht, A., Peralta, R.M., 2018. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Science of The Total Environment 634, 1346–1351. https://doi.org/10.1016/j.scitotenv.2018.04.051

Bruscato, C., Malvessi, E., Brandalise, R. N., & Camassola, M. (2019). High performance of macrofungi in the production of mycelium-based biofoams using sawdust — Sustainable technology for waste reduction. Journal of Cleaner Production, 234, 225–232. https://doi.org/10.1016/J.JCLEPRO.2019.06.150

Coello Paredes, J.M., 2011. Aplicación del hongo Pleurotus ostreatus como alternativa para la biorremediación de suelos contaminados con metales pesados. Escuela Superior Politécnica del Litoral, Guayaquil. https://core.ac.uk/outputs/12410999?source=oai

Dedousi, M., Melanouri, E.-M., Diamantopoulou, P., 2023. Carposome productivity of Pleurotus ostreatus and Pleurotus eryngii growing on agro-industrial residues enriched with nitrogen, calcium salts and oils. Carbon Resources Conversion 6, 150–165. https://doi.org/10.1016/j.crcon.2023.02.001

Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, 2, 113–119. https://doi.org/10.1016/J.AASPRO.2014.11.017

Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/srep41292

Hara, E., & Uchiyama, H. (2013). Degradation of Petroleum Pollutant Materials by Fungi. In Fungi as Bioremediators (pp. 117–133). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_5

Huang, S., Shan, M., Chen, J., Penttinen, P., & Qin, H. (2018). Contrasting dynamics of polychlorinated biphenyl dissipation and fungal community composition in low and high organic carbon soils with biochar amendment. Environmental Science and Pollution Research, 25(33), 33432–33442. https://doi.org/10.1007/S11356-018-3271-9/TABLES/2

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-13295-2

Joshi, K., Meher, M. K., & Poluri, K. M. (2020). Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ASC Applied Biomaterials, 3(4), 1884–1892. https://doi.org/10.1021/ACSABM.9B01047

Kadiev, K. M., Gyul’Maliev, A. M., & Khadzhiev, S. N. (2015). Quantum-chemical modeling of strength of organometallic bonds in oil. Petroleum Chemistry, 55(8), 609–617. https://doi.org/10.1134/S0965544115080071

Kózka, B., Nałęcz-Jawecki, G., Turło, J., Giebułtowicz, J., 2020. Application of Pleurotus ostreatus to efficient removal of selected antidepressants and immunosuppressant. J Environ Manage 273, 111131. https://doi.org/10.1016/j.jenvman.2020.111131

Klimek, B., Sitarz, A., Choczyński, M., & Niklińska, M. (2016). The Effects of Heavy Metals and Total Petroleum Hydrocarbons on Soil Bacterial Activity and Functional Diversity in the Upper Silesia Industrial Region (Poland). Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2966-0

Kubartová, A., Ranger, J., Berthelin, J., & Beguiristain, T. (2009). Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology, 58(1), 98– 107. https://doi.org/10.1007/S00248-008-9458-8/FIGURES/5

Kumar, S., Bhushan, B., Wakchaure, G.C., Dutta, R., Jat, B.S., Meena, K.K., Rakshit, S., Pathak, H., 2023. Unveiling the impact of heat stress on seed biochemical composition of major cereal crops: Implications for crop resilience and nutritional value. Plant Stress 9, 100183. https://doi.org/10.1016/j.stress.2023.100183

Majesty, D. K. C., Winner, K., Univeristy, R., Prince, O., & Ijeoma, E. (2019). Nutritional, Anti-nutritional, and Biochemical Studies on the Oyster Mushroom, Pleurotus ostreatus. EC Nutrition, 14(1), 36–59. https://www.researchgate.net/publication/333220567_Nutritional_Anti- nutritional_and_Biochemical_Studies_on_the_Oyster_Mushroom_Pleurotus_ostreatus

Mohamad Nor, N., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. Journal of Environmental Chemical Engineering, 1(4), 658–666. https://doi.org/10.1016/J.JECE.2013.09.017

Melanouri, E. M., Dedousi, M., Diamantopoulou, P., 2022. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization phase. Carbon Resources Conversion 5, 61–70. https://doi.org/10.1016/j.crcon.2021.12.004

Nyinoh, I. W., & Utume, L. N. (2021). Bioremediation of spent engine oil-contaminated soil Biostimulatory effects of Pleurotus ostreatus spent substrate in bioremediation of spent engine oil-contaminated soil. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 15(March), 9–19. https://www.researchgate.net/publication/350372782_Biostimulatory_effects_of_Pleurotu s_ostreatus_spent_substrate_in_bioremediation_of_spent_engine_oil-contaminated_soil

Pánek, M., Wiesnerová, L., Jablonský, I., Novotný, D., & Tomšovský, M. (2019). What is cultivated oyster mushroom? Phylogenetic and physiological study of Pleurotus ostreatus and related taxa. Mycological Progress, 18(9), 1173–1186. https://doi.org/10.1007/S11557-019-01515-0/FIGURES/2

Pardo Giménez, A., Perona Zamora, M.A., Pardo Núñez, J., 2008. Utilización de fibra de kenaf (Hibiscus cannabinus L.) en la elaboración de sustratos específicos para cultivo de Pleurotus ostreatus (Jacq. ex Fr.) Kummer. Rev Iberoam Micol 25, 57–61. https://doi.org/10.1016/S1130-1406(08)70015-9

Piska, K., Sułkowska-Ziaja, K., & Muszyńska, B. (2017). Edible mushroom Pleurotus ostreatus (Oyster mushroom) – Its dietary significance and biological activity. Acta Scientiarum Polonorum, Hortorum Cultus, 16(1), 151–161. https://doi.org/10.24326/asphc.2017.1.0

Sadiq, S., Mahmood-ul-Hassan, M., Ahad, K., & Nazir, S. (2019). Bioremediation of hexachlorocyclohexane (HCH) in soil using spent mushroom compost of Pleurotus ostreatus. Bioremediation Journal, 22(3–4), 126–135. https://doi.org/10.1080/10889868.2018.1516615

Setälä, H., & McLean, M. A. (2004). Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia, 139(1), 98–107. https://doi.org/10.1007/S00442-003-1478-Y/FIGURES/4

Silanikove, N., Danai, O., Levanon, D., 1988. Composted cotton straw silage as a substrate for Pleurotus sp. cultivation. Biological Wastes 25, 219–226. https://doi.org/10.1016/0269-7483(88)90081-X

Somarriba Sokolova, L. N., Ermakova, E. V., & Rynkovskaya, M. (2018). A Review of Agro- waste Materials as Partial Replacement of Fine Aggregate in Concrete. IOP Conference Series: Materials Science and Engineering, 371(1), 012012. https://doi.org/10.1088/1757- 899X/371/1/012012

Toghyani, M., Tohidi, M., Gheisari, A., Tabeidian, A., & Toghyani, M. (2012). Evaluation of oyster mushroom (Pleurotus ostreatus) as a biological growth promoter on performance, humoral immunity, and blood characteristics of broiler chicks. Journal of Poultry Science, 49(3), 183–190. https://doi.org/10.2141/jpsa.011068

Wang, S., Li, W., Liu, L., Qi, H., You, H., 2022. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: Characteristics, mechanisms, and toxicological response. J Hazard Mater 424, 127716. https://doi.org/10.1016/j.jhazmat.2021.127716

Xu, F., Chen, P., Li, H., Qiao, S., Wang, J., Wang, Y., Wang, X., Wu, B., Liu, H., Wang, C., Xu, H., 2021. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. J Hazard Mater 416, 125814. https://doi.org/10.1016/j.jhazmat.2021.125814

Zimmermann, A., Webber, H., Zhao, G., Ewert, F., Kros, J., Wolf, J., Britz, W., de Vries, W., 2017. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agric Syst 157, 81–92. https://doi.org/10.1016/j.agsy.2017.07.007

Published

2024-07-09

How to Cite

Zanetta-Donoso, C., Espinoza-Zambrano, P., Ormaza-Lucas, M., Mendoza-García, G., & Velásquez-Ferrín, A. (2024). Effect of a hydrocarbon derivative on the growth of the fungus Pleurotus ostreatus. Revista De Ciencias Agropecuarias ALLPA. ISSN: 2600-5883., 7(14), 64–76. https://doi.org/10.56124/allpa.v7i14.0078