Microbiota intestinal y coccidiosis en aves de consumo: riesgos para la salud pública

Autores/as

DOI:

https://doi.org/10.56124/allpa.v8i16.0135

Palabras clave:

Vigilancia sanitaria, enfermedades entéricas, seguridad alimentaria, aves de consumo, salud intestinal

Resumen

La coccidiosis en aves de consumo constituye una de las principales enfermedades entéricas que afectan el desempeño productivo e incide sobre salud pública en general. La revisión tuvo el objetivo de explorar la interacción entre la microbiota intestinal y la coccidiosis en aves de consumo. Para su efecto, se desarrolló una revisión bibliográfica narrativa de carácter temático, la búsqueda de información se realizó en bases de datos científicas de alto impacto, priorizando literatura en español e inglés publicada entre 2015 y 2025, y centrada en la producción avícola, la evidencia recopilada fue analizada de manera descriptiva y organizada en ejes temáticos en un marco conceptual analítico. Los resultados evidencian que la interacción entre la coccidiosis y la microbiota intestinal modula la respuesta inmunitaria del ave, favoreciendo la colonización por patógenos entéricos y comprometiendo la estabilidad funcional del tracto digestivo. Estas alteraciones tienen implicaciones directas sobre la inocuidad de los productos avícolas y constituyen un factor crítico de riesgo sanitario para los consumidores. En síntesis, la coccidiosis y la microbiota intestinal constituyen factores determinantes de la salud y seguridad alimentaria en la producción avícola.

Palabras clave: Vigilancia sanitaria, enfermedades entéricas, seguridad alimentaria, aves de consumo, salud intestinal.

Abstract

Coccidiosis in poultry is one of the main enteric diseases affecting productive performance and has an impact on public health in general. The review aimed to explore the interaction between the intestinal microbiota and coccidiosis in poultry. To this end, a thematic narrative literature review was conducted, searching high-impact scientific databases, prioritizing literature in Spanish and English published between 2015 and 2025, and focusing on poultry production. The evidence collected was analyzed descriptively and organized into thematic areas within an analytical conceptual framework. The results show that the interaction between coccidiosis and the intestinal microbiota modulates the bird's immune response, favoring colonization by enteric pathogens and compromising the functional stability of the digestive tract. These alterations have direct implications for the safety of poultry products and constitute a critical health risk factor for consumers. In summary, coccidiosis and the intestinal microbiota are determining factors in food health and safety in poultry production.

Keywords: health surveillance, enteric diseases, food safety, poultry, intestinal health.

Fecha de recepción: 09 de abril de 2025; Fecha de aceptación: 18 de junio de 2025; Fecha de publicación: 09 de julio del 2025.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmad, R., Yu, Y., Hua, K., Chen, W., Zaborski, D., Dybus, A., Hsiao F., & Cheng, Y. (2024). Management and control of coccidiosis in poultry — A review. Animal Bioscience. 37(1) 1-15. https://doi.org/10.5713/ab.23.0189

Aruwa, C., Pillay, C., Nyaga, M., & Sabiu, S. (2021). Poultry gut health – microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. Journal Of Animal Science And Biotechnology/Journal Of Animal Science And Biotechnology, 12(1), 119. https://doi.org/10.1186/s40104-021-00640-9

Attia, M., Mohamed, R., & Salem, H. (2023). Impact of Eimeria tenella experimental Infection on intestinal and splenic reaction of broiler chickens. Journal Of Parasitic Diseases, 47(4), 829-836. https://doi.org/10.1007/s12639-023-01629-z

Bayat, M., Kuhi, H., Mehr, M. & Hossein-Zadeh, N. (2024). Dietary prebiotic alleviates experimentally induced coccidiosis in broilers. Veterinary Science, 10. https://doi.org/https://doi.org/10.3389/fvets.2023.1224647

Blake, D., Knox, J., Dehaeck, B., Huntington, B., Rathinam, T., Ravipati, V., Ayoade, S., Gilbert, W., Adebambo, A., Jatau, I., Raman, M., Parker, D., Rushton, J., & Tomley, F. (2020). Re-calculating the cost of coccidiosis in chickens. Veterinary Research, 51(1), 115. https://doi.org/10.1186/s13567-020-00837-2

Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x.

Boyner, M., Ivarsson, E., Hansen, A., Lundén, A., Ibrahim, O., Söderlund, R., Cervin, G., Pavia, H., & Wattrang, E. (2024). Effects of a laminarin-rich algal extract on caecal microbiota composition, leukocyte counts, parasite specific immune responses and growth rate during Eimeria tenella infection of broiler chickens. Veterinary Parasitology, 334, 110377. https://doi.org/10.1016/j.vetpar.2024.110377

Che, Y., Yang, Y., Xu, X., Břinda, K., Polz, M. F., Hanage, W. P., & Zhang, T. (2021). Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proceedings Of The National Academy Of Sciences, 118(6). https://doi.org/10.1073/pnas.2008731118

Choi, J., & Kim, W. (2022). Interactions of Microbiota and Mucosal Immunity in the Ceca of Broiler Chickens Infected with Eimeria tenella. Vaccines, 10(11), 1941. https://doi.org/10.3390/vaccines10111941

Clavijo, V., y Vives, M. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006-1021. https://doi.org/https://doi.org/10.3382/ps/pex359

Cortés, P., Pokrant, E., Yévenes, K., Maddaleno, A., Flores, A., Vargas, M. B., Trincado, L., Maturana, M., Lapierre, L., & Cornejo, J. (2025). Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics, 14(1), 89. https://doi.org/10.3390/antibiotics14010089

De Alvarenga, P., Paulino, P., Da Silva, N., Galdino, K., Rabello, C., De Souza, F. G., Reis, T., Machado, L., De Resende, F., & Santos, H. (2025). Dose and age-dependent effects of Eimeria spp. infection on cytokine and intestinal integrity gene expression in broiler chickens. Veterinary Parasitology, 338, 110550. https://doi.org/10.1016/j.vetpar.2025.110550

De Freitas, L., Sakomura, N., De Paula, M., Mariani, A., Lambert, W., Andretta, I., & Létourneau, M. (2023). Coccidiosis infection and growth performance of broilers in experimental trials: insights from a meta-analysis including modulating factors. Poultry Science, 102(11), 103021. https://doi.org/10.1016/j.psj.2023.103021

Doublet, B., Leclercq, S., Zygmunt, M., & Cloeckaert, A. (2024). Editorial: Conference Research Topic: 9th symposium on Antimicrobial Resistance in Animals and the Environment (ARAE 2023). Frontiers In Microbiology, 15, 1509192. https://doi.org/10.3389/fmicb.2024.1509192

Du, S., Song, Z., Cen, Y., Fan, J., Li, P., Si, H., & Hu, D. (2024). Susceptibility and cecal microbiota alteration to Eimeria-infection in Yellow-feathered broilers, Arbor Acres broilers and Lohmann pink layers. Poultry Science, 103(7), 103824. https://doi.org/10.1016/j.psj.2024.103824

Ducatelle, R., Goossens, E., Eeckhaut, V., & Van Immerseel, F. (2023). Poultry gut health and beyond. Animal Nutrition, 13, 240-248. https://doi.org/10.1016/j.aninu.2023.03.005

El-Hack, M. E. A., El-Saadony, M. T., Alqhtani, A. H., Swelum, A. A., Salem, H. M., Elbestawy, A. R., Noreldin, A. E., Babalghith, A. O., Khafaga, A. F., Hassan, M. I., & El-Tarabily, K. A. (2022). The relationship among avian influenza, gut microbiota and chicken immunity: an updated overview. Poultry Science, 101(9), 102021. https://doi.org/10.1016/j.psj.2022.102021

El-Shall, N., El-Naggar, K., El-Kasrawy, N., Elblehi, S., Albadrani, G., Al-Ghadi, M., & Abdel-Daim, M. (2024) The anticoccidial effects of probiotics and prebiotics on the live coccidia vaccine and the subsequent influence on poultry performance post-challenge with mixed Eimeria species Poultry Science 103(12) https://doi.org/10.1016/j.psj.2024.104283

FAO. (2021). Panorama de la producción avícola en América Latina. Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Fathima, S., Shanmugasundaram, R., Adams, D., & Selvaraj, R. K. (2022). Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods, 11(10), 1401. https://doi.org/10.3390/foods11101401

Fatoba, A., y Adeleke, M. (2018). Diagnosis and control of chicken coccidiosis: A recent update. Journal of Parasitic Diseases, 42(4), 483–493. https://doi.org/https://doi.org/10.1007/s12639-018-1048-1

Gazoni, F., Stefanello, C., Santos, H., Boiago, M., Galli, G., Tellez, G., & Juarez, M. (2025). Monitoring Avian Coccidiosis Incidence in Broiler Farms in Brazil: Integrating Eimeria sp. Lesion Scoring with Direct Micro-Quantification of E. maxima Oocysts. Brazilian Journal Of Poultry Science, 27(1). https://doi.org/10.1590/1806-9061-2024-1994

Graham, D., Petrone, V. M., Hernandez, X., Coles, M., Juarez, M. A., Latorre, J. D., Chai, J., Shouse, S., Zhao, J., Forga, A., Senas, R., Laverty, L., Martin, K., Trujillo, C., Loeza, I., Gray, L. S., Hargis, B., & Tellez, G. (2023). Assessing the effects of a mixed Eimeria spp. challenge on performance, intestinal integrity, and the gut microbiome of broiler chickens. Frontiers In Veterinary Science, 10, 1224647. https://doi.org/10.3389/fvets.2023.1224647

Grond, K., Sandercock, B., Jumpponen, A., & Zeglin, L. (2018). The avian gut microbiota: community, physiology and function in wild birds. Journal Of Avian Biology, 49(11). https://doi.org/10.1111/jav.01788

Guo, J., Zhao, Z., Broadwater, C., Tobin, I., Liu, J., Whitmore, M., & Zhang, G. (2025). Is Intestinal Microbiota Fully Restored After Chickens Have Recovered from Coccidiosis? Pathogens, 14(1), 81. https://doi.org/10.3390/pathogens14010081

Hasan, N., & Yang, H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 7, e7502. https://doi.org/10.7717/peerj.7502

Huang, G., Tang, X., Bi, F., Hao, Z., Han, Z., Suo, J., Zhang, S., Wang, S., Duan, C., Yu, Z., Yu, F., Yu, Y., Lv, Y., Suo, X., & Liu, X. (2018). Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding. Veterinary Parasitology, 258, 30-37. https://doi.org/10.1016/j.vetpar.2018.06.005

Javanmiri, E., Rahimi, S., Karimi, M., Nabiyan, S., Behnamifar, A., & Grimes, J. (2024). Comparison of the effect of anticoccidial drug, probiotic, synbiotic, phytochemicals and vaccine in prevention and control of coccidiosis in broiler chickens challenged with Eimeria spp. Poultry Science 103(12) https://doi.org/10.1016/j.psj.2024.104357

Jiang, H., Chen, W., Su, L., Huang, M., Lin, L., Su, Q., Li, G., Ahmad, H. I., Li, L., Zhang, X., Li, H., & Chen, J. (2020). Impact of host intraspecies genetic variation, diet, and age on bacterial and fungal intestinal microbiota in tigers. MicrobiologyOpen, 9(7), e1050. https://doi.org/10.1002/mbo3.1050

Kador, S., Islam, K., Rubaiyat, R., Bhuiyan, M., Chakrovarty, T., Rahman, S., Islam, O., & Islam, M. (2025). Abundance and transmission of antibiotic resistance and virulence genes through mobile genetic elements in integrated chicken and fish farming system. Scientific Reports, 15(1), 20953. https://doi.org/10.1038/s41598-025-92921-w

Karadedos, D., Mantzios, T., Kiousi, D., Tsifintaris, M., Giannenas, I., Sakkas, P., Papadopoulos, G., Antonissen, G., Pappa, A., Galanis, A., & Tsiouris, V. (2025). Metagenomic Insight into Cecal Microbiota Shifts in Broiler Chicks Following Eimeria spp. Vaccination. Microorganisms, 13(7), 1470. https://doi.org/10.3390/microorganisms13071470

Kers, J., Velkers, F., Fischer, E., Hermes, G., Stegeman, J., & Smidt, H. (2018). Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Frontiers In Microbiology, 9, 235. https://doi.org/10.3389/fmicb.2018.00235

Khasanah, H., Kusbianto, D., Purnamasari, L., Cruz, J., Widianingrum, D., & Hwang, S. (2024). Modulation of chicken gut microbiota for enhanced productivity and health: A review. Veterinary World, 17(5), 1073-1083. https://doi.org/10.14202/vetworld.2024.1073-1083

Kim, H. W., Kim, N. K., Wolf, P. G., Brandvold, K., Rehberger, J. M., Rehberger, T. G., Dilger, R. N., Smith, A. H., & Mackie, R. I. (2025). Intestinal microbiota composition and bile salt hydrolase activity in fast and slow growing broiler chickens: implications for growth performance and production efficiency. Journal Of Animal Science And Biotechnology/Journal Of Animal Science And Biotechnology, 16(1), 108. https://doi.org/10.1186/s40104-025-01243-4

Kogut, M., & Fernandez, M. (2022). Editorial: Functional mechanisms at the avian gut microbiome-intestinal immunity interface and its regulation of avian physiological responses. Frontiers In Physiology, 13, 1063102. https://doi.org/10.3389/fphys.2022.1063102

Kogut, M., y Arsenault, R. (2016). The New Paradigm in Food Animal Production. Frontiers in Veterinary Science, 3(71). https://doi: 10.3389/fvets.2016.00071

Kpodo, K. R., Miska, K. B., Schreier, L. L., Milliken, D. J., & Proszkowiec-Weglarz, M. (2025). Effects of butyric acid glycerol ester supplementation on intestinal nutrient transporter and immune-related genes in broiler chickens challenged with Eimeria maxima. Frontiers In Veterinary Science, 11, 1501286. https://doi.org/10.3389/fvets.2024.1501286

Larsson, D., & Flach, C. (2021). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269. https://doi.org/10.1038/s41579-021-00649-x

Lee, Y., Luand, M., & Lillehoj, H. (2022). Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies. Vaccines, 10(215). https://doi.org/10.3390/vaccines10020215

Lin, Y., Xie, Y., Hao, Z., Bi, H., Liu, Y., Yang, X., & Xia, Y. (2021). Protective Effect of Uric Acid on ox-LDL-Induced HUVECs Injury via Keap1-Nrf2-ARE Pathway. Journal Of Immunology Research, 2021, 1-19. https://doi.org/10.1155/2021/5151168

Liu, G., Ajao, A. M., Shanmugasundaram, R., Taylor, J., Ball, E., Applegate, T. J., Selvaraj, R., Kyriazakis, I., Olukosi, O., & Kim, W. (2023). The effects of arginine and branched-chain amino acid supplementation to reduced-protein diet on intestinal health, cecal short-chain fatty acid profiles, and immune response in broiler chickens challenged with Eimeria spp. Poultry Science, 102(7), 102773. https://doi.org/10.1016/j.psj.2023.102773

Liu, L., Li, Q., Yang, Y., & Guo, A. (2021). Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Frontiers In Veterinary Science, 8, 736739. https://doi.org/10.3389/fvets.2021.736739

Lopes, E., Santaren, K., De Souza, L., Parente, C., Picão, R., De Azevedo Jurelevicius, D., & Seldin, L. (2024). Cross-environmental cycling of antimicrobial resistance in agricultural areas fertilized with poultry litter: A one health approach. Environmental Pollution, 363(Pt 1), 125177. https://doi.org/10.1016/j.envpol.2024.125177

Lu, C., Yan, Y., Jian, F. & Ning, C. (2021). Coccidia-Microbiota Interactions and Their Effects on the Host. Frontiers in Cellular and Infection Microbiology, 11, https://doi:10.3389/fcimb.2021.751481

Macdonald, E., Van Diemen, P., Martineau, H., Stevens, M., Tomley, F., Stabler, R., & Blake, D. (2018). Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infection And Immunity, 87(2). https://doi.org/10.1128/iai.00772-18

Macdonald, S., Nolan, M., Harman, K., Boulton, K., Hume, D., Tomley, F., Stabler, R., & Blake, D. (2017). Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS ONE, 12(9), e0184890. https://doi.org/10.1371/journal.pone.0184890

McKenna, A., Ijaz, U. Z., Kelly, C., Linton, M., Sloan, W. T., Green, B. D., Lavery, U., Dorrell, N., Wren, B. W., Richmond, A., Corcionivoschi, N., & Gundogdu, O. (2020). Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter. Microbiome, 8(1), 128. https://doi.org/10.1186/s40168-020-00908-8

Miska, K., Campos, P., Cloft, S., Jenkins, M., & Proszkowiec, M. (2024). Temporal Changes in Jejunal and Ileal Microbiota of Broiler Chickens with Clinical Coccidiosis (Eimeria maxima). Animals, 14(20), 2976. https://doi.org/10.3390/ani14202976

Moore, R., Park, S., Kubena, L., Byrd, J., McReynolds, J., Burnham, Hume, M., Birkhold, S., Nisbet, D., & Ricke, S. (2004). Comparison of zinc acetate and propionate addition on gastrointestinal tract fermentation and susceptibility of laying hens to Salmonella enteritidis during forced molt. Poultry Science, 83(8), 1276-1286. https://doi.org/10.1093/ps/83.8.1276

Naemi, A., Dey, H., Kiran, N., Sandvik, S. T., Slettemeås, J. S., Nesse, L. L., & Simm, R. (2020). NarAB Is an ABC-Type Transporter That Confers Resistance to the Polyether Ionophores Narasin, Salinomycin, and Maduramicin, but Not Monensin. Frontiers In Microbiology, 11, 104. https://doi.org/10.3389/fmicb.2020.00104

OMS. (2019). Uso prudente de antimicrobianos en animales destinados a la producción de alimentos. Ginebra: Organización Mundial de la Salud.

Papoula, R., Abdulla, K., Silver, G., Kellett, A., & Antic, D. (2025). An evaluation of the impact of abattoir processing on the levels of Campylobacter spp. and Enterobacteriaceae on broiler carcasses. Frontiers In Microbiology, 16, 1613058. https://doi.org/10.3389/fmicb.2025.1613058

Park, I., Lee, Y., Goo, D., Zimmerman, N., Smith, A., Rehberger, T., & Lillehoj, H. S. (2019). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), 725-733. https://doi.org/10.1016/j.psj.2019.12.002

Pham, H., Matsubayashi, M., Tsuji, N., & Hatabu, T. (2021). Relationship between Eimeria tenella associated-early clinical signs and molecular changes in the intestinal barrier function. Veterinary Immunology And Immunopathology, 240, 110321. https://doi.org/10.1016/j.vetimm.2021.110321

Qaid, M., Al-Mufarrej, S., Azzam, M., Al-Garadi, A., Alqhtani, H., Al-Abdullatif, A., Hussein, E., & Suliman, G. (2022). Dietary Cinnamon Bark Affects Growth Performance, Carcass Characteristics, and Breast Meat Quality in Broiler Infected with Eimeria tenella Oocysts. Animals, 12(2), 166. https://doi.org/10.3390/ani12020166

Ribeiro, J., Silva, V., Monteiro, A., Vieira, M., Igrejas, G., Reis, F., Barros, L., & Poeta, P. (2023). Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals, 13(8), 1362. https://doi.org/10.3390/ani13081362

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014

Saint, V., Guillory, V., Chollot, M., Fleurot, I., Kut, E., Roesch, F., Caballero, I., Helloin, E., Chambellon, E., Ferguson, B., Velge, P., Kempf, F., Trapp, S., & Guabiraba, R. (2024). The gut microbiota and its metabolite butyrate shape metabolism and antiviral immunity along the gut-lung axis in the chicken. Communications Biology, 7(1), 1185. https://doi.org/10.1038/s42003-024-06815-0

Samreen, N., Ahmad, I., Malak, H., & Abulreesh, H. (2021). Environmental antimicrobial resistance and its drivers: a potential threat to public health. Journal Of Global Antimicrobial Resistance, 27, 101-111. https://doi.org/10.1016/j.jgar.2021.08.001

Santiani, F., Silva, R. o. S., De Oliveira Júnior, C. A., Withoeft, J. A., Cristo, T. G., Costa, L. S., Gaspar, T., & Casagrande, R. A. (2023b). Characterization of coccidiosis and evaluation of suggestive cases of subclinical necrotic enteritis in broilers. Pesquisa Veterinária Brasileira, 43. https://doi.org/10.1590/1678-5150-pvb-7090

Sassi, A., Basher, N., Kirat, H., Meradji, S., Ibrahim, N. A., Idres, T., & Touati, A. (2025). The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antibiotics, 14(8), 764. https://doi.org/10.3390/antibiotics14080764

Shira, E. B., & Friedman, A. (2018). Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS ONE, 13(7), e0200393. https://doi.org/10.1371/journal.pone.0200393

Sun, D., Jeannot, K., Xiao, Y., & Knapp, C. W. (2019). Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Frontiers In Microbiology, 10, 1933. https://doi.org/10.3389/fmicb.2019.01933

Swinkels, A., Berendsen, J., Fischer, E., Zomer, L., & Wagenaar, J. (2024). Extended period of selection for antimicrobial resistance due to persistency of antimicrobials in broilers. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2024.04.18.590069

Teng, P., Choi, J., Tompkins, Y., Lillehoj, H., & Kim, W. (2021). Impacts of increasing challenge with Eimeria maxima on the growth performance and gene expression of biomarkers associated with intestinal integrity and nutrient transporters. Veterinary Research, 52(1), 81. https://doi.org/10.1186/s13567-021-00949-3

Teng, P., Liu, G., Choi, J., Yadav, S., Wei, F., & Kim, W. (2023). Effects of levels of methionine supplementations in forms of L- or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poultry Science, 102(5), 102586. https://doi.org/10.1016/j.psj.2023.102586

Teng, T., Wang, Y., Zhu, X., Zhang, X., Yi, S., Fan, G., & Liu, B. (2021). Numerical Analysis on the Storage of Nuclear Waste in Gas-Saturated Deep Coal Seam. Geofluids, 2021, 1-12. https://doi.org/10.1155/2021/3277131

Tomal, F., Sadrin, G., Gaboriaud, P., Guitton, E., Sedano, L., Lallier, N., Rossignol, C., Larcher, T., Rouille, E., Ledevin, M., Guabiraba, R., Silvestre, A., Lacroix-Lamandé, S., Schouler, C., Laurent, F., & Bussière, F. I. (2023). The caecal microbiota promotes the acute inflammatory response and the loss of the intestinal barrier integrity during severe Eimeria tenella infection. Frontiers In Cellular And Infection Microbiology, 13, 1250080. https://doi.org/10.3389/fcimb.2023.1250080

Venkitanarayanan, K., Thakur, S., & Ricke, S. C. (2019). Food Safety in Poultry Meat Production. Springer.

Wang, J., Hong, M., Long, J., Yin, Y., & Xie, J. (2022). Differences in intestinal microflora of birds among different ecological types. Frontiers In Ecology And Evolution, 10. https://doi.org/10.3389/fevo.2022.920869

Weng, S., Tian, E., Gao, M., Zhang, S., Yang, G., & Zhou, B. (2024b). Eimeria: Navigating complex intestinal ecosystems. PLoS Pathogens, 20(11), e1012689. https://doi.org/10.1371/journal.ppat.1012689

Wickramasuriya, S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines, 10(2), 172. https://doi.org/10.3390/vaccines10020172

Yang, C., Das, Q., Rehman, M., Yin, X., Shay, J., Gauthier, M., Lau, C., Ross, K. & Diarra, M. (2023). Microbiome of ceca from broiler chicken vaccinated or not against coccidiosis and fed berry pomaces. Microorganisms, 11(5), 1184. https://doi.org/https://doi.org/10.3390/microorganisms11051184

Yin, H., Sumners, L., Dalloul, R., Miska, K., Fetterer, R., Jenkins, M., Zhu, Q., & Wong, E. (2015). Changes in expression of an antimicrobial peptide, digestive enzymes, and nutrient transporters in the intestine of E. praecox-infected chickens. Poultry Science, 94(7), 1521-1526. https://doi.org/10.3382/ps/pev133

Yuan, Y., Yang, L., Zhao, Q., Suo, X., & Hao, Z. (2023). Matrine provides a protective effect against Eimeria tenella challenge by alleviating intestinal barrier damage. Veterinary Parasitology, 319, 109940. https://doi.org/10.1016/j.vetpar.2023.109940

Yue, T., Lu, Y., Ding, W., Xu, B., Zhang, C., Li, L., Jian, F., & Huang, S. (2025). The Role of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Livestock and Poultry Gut Health: A Review. Metabolites, 15(7), 478. https://doi.org/10.3390/metabo15070478

Yue, Y., Luasiri, P., Li, J., Laosam, P. & Sangsawad, P. (2024). Research advancements on the diversity and host interaction of gut microbiota in chickens. Frontiers in Veterinary Science, 11:1492545. https://doi:10.3389/fvets.2024.1492545

Zhang, K., Wang, X., Gong, X., & Sui, J. (2022). Gut Microbiome Differences in Rescued Common Kestrels (Falco tinnunculus) Before and After Captivity. Frontiers In Microbiology, 13, 858592. https://doi.org/10.3389/fmicb.2022.858592

Zhou, Q., Lan, F., Li, X., Yan, W., Sun, C., Li, J., Yang, N., & Wen, C. (2021). The Spatial and Temporal Characterization of Gut Microbiota in Broilers. Frontiers In Veterinary Science, 8, 712226. https://doi.org/10.3389/fvets.2021.712226

Zhou, X., Wang, L., Wang, Z., Zhu, P., Chen, Y., Yu, C., Chen, S., & Xie, Y. (2023). Impacts of Eimeria coinfection on growth performance, intestinal health and immune responses of broiler chickens. Veterinary Parasitology, 322, 110019. https://doi.org/10.1016/j.vetpar.2023.110019

Descargas

Publicado

2025-07-09

Cómo citar

Mendoza-Mera, C. E., Villamar-Guerrero, I. L., & Gamboa-Cevallos, H. X. (2025). Microbiota intestinal y coccidiosis en aves de consumo: riesgos para la salud pública. Revista De Ciencias Agropecuarias ALLPA. ISSN: 2600-5883., 8(16), 323–345. https://doi.org/10.56124/allpa.v8i16.0135