Design of a tourist amphibious vehicle with capacity for eight passengers.

Investigation article

Authors

  • Johan Ariel Soto-Cevallos Universidad Laica Eloy Alfaro de Manabí de la Facultad de Ingeniería “Carrera de Mecánica Naval”, Manta - Ecuador
  • Lady Ximena Barreto-Barre Universidad Laica Eloy Alfaro de Manabí de la Facultad de Ingeniería “Carrera de Mecánica Naval”, Manta - Ecuador.
  • Francisco Javier Paredes-Mera Universidad Laica Eloy Alfaro de Manabí de la Facultad de Ingeniería “Carrera de Mecánica Naval”, Manta - Ecuador.

Keywords:

Resistance, power, propellant system, test channel

Abstract

The purpose of this project is to design an amphibious vehicle with a capacity of 8 passengers for the tourism sector, using mechanical configurations to travel by land and navigate through water, the technical basis for the conceptual elaboration of the design of the RINA classifier has been considered primarily ( Italian Naval Registry), the hull of the amphibious tourist vehicle was modeled in the Rinhoceros program and according to RINA it has been considered for the construction of the ALUMINUM helmet AL-5083 / H111 and reinforcements AL-6082 / t6. In the Maxsurfs program that simulates a test channel, the plane of shapes was analyzed and the values of the maximum draft at 0.75 m and the displacement at 8,087 t were obtained, the behavior of the helmet was also evaluated in a draft of 0.5 and 0.25, know These data serve to delimit the carrying capacity of the amphibious vehicle in the water; then the maximum resistance values at 10 knots were determined, being 4117.55 N (newton); The software also recommends power that allows the advance of the amphibious vehicle based on the maximum speed being, 21182.51 Watt, considering sea factors and others, the reference power is at 31.2 hp and in commercial catalogs the YANMAR 3JH5E engine was chosen. So that the displacement radius meets the maximum speed according to the calculations, the ideal propeller is chosen, in this case under the characteristics of the manufacturer Mercury (power Vs diameter) the diameter value is obtained by equation, the propeller model It is 827312A45 Aluminum. The mechanical part has a gearbox system with two exits - two gears and 4 changes, the maximum speed reached is 50 km / h, (propeller system - drive system), does not need a shovel to generate the hull government in the water, since the system that connects to the propeller can rotate up to 180 °.

Keywords: Resistance, power, propellant system, test channel.

Downloads

Download data is not yet available.

References

Autoridad Portuaria de Manta. (2020). Estadísticas portuarias. Manta, Ecuador: Autoridad Portuaria de Manta. http://www.puertodemanta.gob.ec/estadisticas-portuarias/
Dunham, W. H. (1963). U.S. Patent No. 3,077,321. Washington, DC: U.S. Patent and Trademark Office.
Esakki, B., Ganesan, S., Mathiyazhagan, S., Ramasubramanian, K., Gnanasekaran, B., Son, B., ... & Choi, J. S. (2018). Design of amphibious vehicle for unmanned mission in water quality monitoring using internet of things. Sensors, 18(10), 3318.
Fabian, P. J. (2015). Diseño y adaptación de chasis, carrocería y sistema. Ibarra: Universidad técnica del Norte.
Iskandar, F. (2006). Estudio de la aaerodinámica de los vehículos. Prospectiva, 70.
Kramer, C. F., & Kerby, F. G. (1946). U.S. Patent No. 2,397,791. Washington, DC: U.S. Patent and Trademark Office.
Lee, S. J., Lee, T. I., Lee, J. J., Nam, W., & Suh, J. C. (2017). Hydrodynamic Characteristics of a Hydrofoil-assisted Amphibious Vehicle. Journal of Ship Research, 61(1), 15-22.
Ministerio de Turismo. (2018). LLegadas y salidas internacionales al Ecuador, ciudad Manta. Ecuador turístico, Ministerio de Turismo. https://servicios.turismo.gob.ec/descargas/Turismo-cifras/Publicaciones/IndicadoresDeTurismo/Indicadores-de-Turismo-2018-2019.pdf
Nakisa, M., Maimun, A., Ahmed, Y. M., Behrouzi, F., & Tarmizi, A. (2017). Numerical estimation of shallow water effect on multipurpose amphibious vehicle resistance. Journal of Naval Architecture and Marine Engineering, 14(1), 1-8.
Pavón Narváez, J. C., & Vallejos León, F. A. (2015). Diseño y adaptación de chasis, carrocería y sistema eléctrico a un vehículo anfibio (Bachelor's thesis).
Vijayanandh, R., Kumar, M. S., Rahul, S., Thamizhanbu, E., & Jafferson, M. D. I. (2018). Conceptual Design and Comparative CFD Analyses on Unmanned Amphibious Vehicle for Crack Detection. In International Conference on Unmanned Aerial System in Geomatics (pp. 133-149). Springer, Cham.

Published

2018-07-09

How to Cite

Soto-Cevallos, J. A., Barreto-Barre, L. X., & Paredes-Mera, F. J. (2018). Design of a tourist amphibious vehicle with capacity for eight passengers.: Investigation article. Revista De Ciencias Del Mar Y Acuicultura YAKU. ISSN: 2600-5824., 1(2), 21–27. Retrieved from https://publicacionescd.uleam.edu.ec/index.php/yaku/article/view/71