Aplicación biotecnológica del extracto de alga Padina pavonica en el crecimiento de Lens culinaris y Vigna unguiculata bajo condiciones controladas

Authors

  • Jamileth Mendoza-Barros Carrera Biología. Facultad Ciencias de la Vida y Tecnologías. Universidad Laica Eloy Alfaro de Manabí. Ecuador,
  • Evelyn Cedeño-Pilozo Carrera Biología. Facultad Ciencias de la Vida y Tecnologías. Universidad Laica Eloy Alfaro de Manabi. Ecuador
  • Eduardo Pico-Lozano Carrera Biología. Facultad Ciencias de la Vida y Tecnologías. Universidad Laica Eloy Alfaro de Manabi. Ecuador

DOI:

https://doi.org/10.56124/yaku.v8i14.002%20

Keywords:

Biotecnología, Padina pavonica, Fertilizante, Leguminosas

Abstract

Biofertilizers based on macroalgae improve the growth of agricultural crops and at the same time contribute to the environment, being these a chemical-free option. An evaluation was carried out on lentil (Lens culinaris) and bean (Vigna unguiculata) crops, which were classified into 3 treatments, one of which was a control, to which a biofertilizer preparation based on Padina pavonica was applied in two different concentrations for the treatments. An experimental design was developed, where in the control treatment neither concentration was applied, in treatment 1 a concentration of 13.3 g/l was used and in treatment 2 a concentration of 26.6 g/l under controlled conditions. The plants treated with the prepared product show significantly greater growth than those of the control group. The biofertilizer proved to be effective in growth, validating its potential as a sustainable alternative to chemical fertilizers. The methodology included the collection of P. pavonica on the Barbasquillo beach, its processing and analysis in the laboratory. Statistical tests (ANOVA and Kruskal-Wallis) were performed to confirm significant differences. The treatment with the highest concentration (26.6 g/l) showed better results in both crops. The results highlight the capacity of macroalgae as ecological inputs, promoting agricultural sustainability and reducing dependence on agrochemicals. Thus, the biofertilizer based on the macroalga P. pavonica represents a promising innovation to improve crop productivity in a sustainable manner.

Downloads

Download data is not yet available.

References

Alasvandyari, F., Mahdavi, B., & Hashemi, M. (2024). Evaluación de los efectos de Padina pavonica bajo condiciones de estrés hídrico en el crecimiento del maíz (Zea mays). Journal of Sustainable Agriculture, 45(3), 234-248.

Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & El-Shershaby, N. A. (2022). Las algas como biofertilizantes: entre la situación actual y el futuro. Revista Saudí de Ciencias Biológicas, 29(6), 3083-3096. https://doi.org/10.1016/j.sjbs.2022.03.020

Benita, M., Dubinsky, Z., & Lluz, D. (2018). Padina pavonica: Morfología y funciones y mecanismo de calcificación. Marine Biology Research, 14(4), 335-348.

Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Los biofertilizantes funcionan como actor clave en la agricultura sostenible al mejorar la fertilidad del suelo, la tolerancia de las plantas y la productividad de los cultivos. Microbial Cell Factories, 13(1), 66. https://doi.org/10.1186/1475-2859-13-66

Chbani, A., Mawlawi, H., & Zaouk, L. (2013). Evaluación del alga parda (Padina pavonica) como bioestimulante del crecimiento y desarrollo vegetal. African Journal of Agricultural Research, 8(13), 1155-1165. https://doi.org/10.5897/AJAR12.1346

Collahuazo-Reinoso, Y., & Araujo-Abad, S. (2019). Producción de biofertilizantes a partir de microalgas. CEDAMAZ: Revista del Centro de Estudio y Desarrollo de la Amazonía, 10(2), 75-80.

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. https://doi.org/10.1007/s10811-010-9560-4

El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9(3), 359. https://doi.org/10.3390/plants9030359

Espinosa-Antón, A. A., Hernández-Herrera, R. M., & García-García, M. (2021). Potencial de las macroalgas marinas como bioestimulantes en la producción agrícola de Cuba. Revista Cubana de Ciencias Biológicas, 9(2), 45-58.

González, O., Abreu, B., Herrera, M., & López, E. (2017). Uso del agua durante el riego del frijol en suelos Eutric cambisol. Revista Ciencias Técnicas Agropecuarias, 26(1), 71-77.

Jiménez-Tobón, D., Galo-Molina, J., Vahos-Posada, D., & Ríos-Osorio, L. (2022). Efecto del uso de biofertilizantes sobre la productividad agrícola: Revisión sistemática. Hechos Microbiológicos, 13(2), 1-15. https://doi.org/10.17533/udea.hm.v13n2a05

Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386-399. https://doi.org/10.1007/s00344-009-9103-x

Kumar, S., Patel, R., & Singh, A. (2024). Global market trends in marine biofertilizers: Opportunities and challenges. Marine Biotechnology Quarterly, 12(2), 89-102.

Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. Applied Microbiology and Biotechnology, 98(15), 6599-6607. https://doi.org/10.1007/s00253-014-5828-y

Nabti, E., Jha, B., & Hartmann, A. (2017). Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology, 14(5), 1119-1134. https://doi.org/10.1007/s13762-016-1202-1

Pacheco Flores-de-Valgaz, Á., Lema Choez, E., Naranjo-Morán, J., & Marzano Santander, P. (2024). Macroalgas rojas: una alternativa ecológica para la agricultura sostenible del Ecuador. Boletín de Investigaciones Marinas y Costeras, 53(2), 143-168.

Panda, D., Mondal, S., & Mishra, A. (2022). Liquid biofertilizers from seaweeds: A critical review. En A. Ranga Rao & G. A. Ravishankar (Eds.), Seaweed biotechnology and biorefinery (pp. 245-268). Springer.

Pérez-Madruga, Y., García-González, M., & Rodríguez-López, H. (2020). Comercialización de bioestimulantes algales: experiencias internacionales. Revista Internacional de Agricultura Sostenible, 15(3), 78-92.

Reinoso-Collahuazo, Y., & Abad-Araujo, S. (2019). Biofertilizantes microalgales: alternativa sostenible para la agricultura moderna. Revista Ecuatoriana de Biotecnología, 7(1), 25-38.

Soto-Jiménez, M. F., Ochoa-Izaguirre, M. J., & Bojórquez-Mascareño, E. I. (2019). Beneficios de los florecimientos macroalgales para la producción de biofertilizantes. Revista Mexicana de Ciencias Agrícolas, 10(8), 1789-1802. https://doi.org/10.29312/remexca.v10i8.915

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. https://doi.org/10.1038/nature01014

Uribe-Orozco, M. E., Mateo-Cid, L. E., Mendoza-González, A. C., Amora-Lazcano, E. F., González-Mendoza, D., & Durán-Hernández, D. (2018). Efecto del alga marina Sargassum vulgare C. Agardh en suelo y el desarrollo de plantas de cilantro. Idesia, 36(4), 137-145. https://doi.org/10.4067/S0718-34292018005001202

Zhang, L., Wang, H., & Chen, Y. (2023). Standardization of seaweed extract production for agricultural applications: A comprehensive review. Sustainable Agriculture Reviews, 31, 145-167.

Published

2025-06-28

How to Cite

Mendoza-Barros, J., Cedeño-Pilozo, E., & Pico-Lozano, E. (2025). Aplicación biotecnológica del extracto de alga Padina pavonica en el crecimiento de Lens culinaris y Vigna unguiculata bajo condiciones controladas. Revista De Ciencias Del Mar Y Acuicultura YAKU. ISSN: 2600-5824., 8(14), 16–28. https://doi.org/10.56124/yaku.v8i14.002