Resistencia Antibiótica en Bioaerosoles Asociados a Lagunas de Oxidación
DOI:
https://doi.org/10.56124/yaku.v8i14.001Keywords:
bioaerosols, wastewater, antibiotic resistance, azithromycin, tetracycline, oxidation pondsAbstract
The study evaluated the relationship between bioaerosols generated in the Calceta oxidation lagoon and the presence of bacteria resistant to high concentrations of azithromycin and tetracycline. Bioaerosol samples were collected inside and outside the lagoon, revealing a significant reduction in colony-forming unit counts with antibiotic treatments compared to controls, demonstrating a dose-dependent relationship. High doses (150 mg/L) were more effective, reducing counts to nearly zero in some monitored points, while low doses (75 mg/L) were less effective. Microbiological analysis identified Gram-positive staphylococci resistant to antibiotics, highlighting the adaptability of microorganisms to high concentrations of these compounds. The results underscore the need for strategies to mitigate antibiotic contamination, such as advanced wastewater treatment and continuous monitoring of resistant bacteria. Furthermore, the importance of research in Ecuador is emphasized, given the limited evaluation of bioaerosols in oxidation ponds and its impact on other ecosystems.
Downloads
References
Ahmad, I., Malak, H. A., y Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101-111.
Anjali, R., y Shanthakumar, S. (2019). Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51-62. https://doi.org/10.1016/j.jenvman.2019.05.090
Bai, H., He, L.-Y., Wu, D.-L., Gao, F.-Z., Zhang, M., Zou, H.-Y., Yao, M.-S., y Ying, G.-G. (2022). Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environment International, 158, 106927. https://doi.org/10.1016/j.envint.2021.106927
Banchon, C. (2021). Airborne Bacteria from Wastewater Treatment and their Antibiotic Resistance: A Meta-Analysis. Journal of Ecological Engineering, 22(10), 205-214. https://doi.org/10.12911/22998993/142207
CDC. (2021). National Infection & Death Estimates for Antimicrobial Resistance. Centers for Disease Control and Prevention. https://shorturl.at/fgK08
CDC. (2024). Datos sobre el uso de antibióticos y la resistencia a los antimicrobianos. US Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/antibiotic-use
Chen, M., Qiu, T., Sun, Y., Song, Y., Wang, X., y Gao, M. (2019). Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols and manures from four types of animal farms in China. Environmental Science and Pollution Research, 26(23), 24213-24222. https://doi.org/10.1007/s11356-019-05672-3
Chen, Y., Yan, C., Yang, Y., y Ma, J. (2021). Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants. Science of The Total Environment, 755, 142615. https://doi.org/10.1016/j.scitotenv.2020.142615
Chopra, I., y Roberts, M. (2001). Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 65(2), 232-260. https://doi.org/10.1128/MMBR.65.2.232-260.2001
Douglas, P., Robertson, S., Gay, R., Hansell, A. L., y Gant, T. W. (2018). A systematic review of the public health risks of bioaerosols from intensive farming. International Journal of Hygiene and Environmental Health, 221(2), 134-173. https://doi.org/10.1016/j.ijheh.2017.10.019
FAO. (2023). Resistencia a los antimicrobianos. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/antimicrobial-resistance
Gaviria-Figueroa, A., Preisner, E. C., Hoque, S., Feigley, C. E., y Norman, R. S. (2019). Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. Science of The Total Environment, 686, 402-412. https://doi.org/10.1016/j.scitotenv.2019.05.454
Goddard, F. G. B., Pickering, A. J., Ercumen, A., Brown, J., Chang, H. H., y Clasen, T. (2020). Faecal contamination of the environment and child health: A systematic review and individual participant data meta-analysis. The Lancet Planetary Health, 4(9), e405-e415. https://doi.org/10.1016/S2542-5196(20)30195-9
Grossman, T. H. (2016). Tetracycline Antibiotics and Resistance. Cold Spring Harbor Perspectives in Medicine, 6(4), a025387. https://doi.org/10.1101/cshperspect.a025387
Habibi, N., Uddin, S., Behbehani, M., Kishk, M., Abdul Razzack, N., Zakir, F., y Shajan, A. (2023). Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. International Journal of Molecular Sciences, 24(7), 6756. https://doi.org/10.3390/ijms24076756
Han, I., y Yoo, K. (2020). Metagenomic Profiles of Antibiotic Resistance Genes in Activated Sludge, Dewatered Sludge and Bioaerosols. Water, 12(6), 1516. https://doi.org/10.3390/w12061516
Han, Y., Yang, T., Xu, G., Li, L., y Liu, J. (2020). Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. Journal of Hazardous Materials, 391, 122256. https://doi.org/10.1016/j.jhazmat.2020.122256
Jelić, D., y Antolović, R. (2016). From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials. Antibiotics, 5(3), 29. https://doi.org/10.3390/antibiotics5030029
Kataki, S., Patowary, R., Chatterjee, S., Vairale, M. G., Sharma, S., Dwivedi, S. K., y Kamboj, D. V. (2022). Bioaerosolization and pathogen transmission in wastewater treatment plants: Microbial composition, emission rate, factors affecting and control measures. Chemosphere, 287, 132180. https://doi.org/10.1016/j.chemosphere.2021.132180
Kowalski, M., Wolany, J., Pastuszka, J. S., Płaza, G., Wlazło, A., Ulfig, K., y Malina, A. (2017). Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14(10), 2181-2192. https://doi.org/10.1007/s13762-017-1314-2
Kusunur, A. B., Mogilipuri, S. S., Moturu, D., Benala, M., Vaiyapuri, M., Panda, S. K., George, J. C., y Badireddy, M. R. (2023). Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. Journal of Applied Microbiology, 134(4), lxad060. https://doi.org/10.1093/jambio/lxad060
Lenth, R. V. (2009). Response-Surface Methods in R , Using rsm. Journal of Statistical Software, 32(7). https://doi.org/10.18637/jss.v032.i07
Li, J., Zhou, L., Zhang, X., Xu, C., Dong, L., y Yao, M. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404-412. https://doi.org/10.1016/j.atmosenv.2015.06.030
Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z., y Wang, R. (2021). Interaction between tetracycline and microorganisms during wastewater treatment: A review. Science of The Total Environment, 757, 143981. https://doi.org/10.1016/j.scitotenv.2020.143981
Lou, M., Liu, S., Gu, C., Hu, H., Tang, Z., Zhang, Y., Xu, C., y Li, F. (2021). The bioaerosols emitted from toilet and wastewater treatment plant: A literature review. Environmental Science and Pollution Research, 28(3), 2509-2521. https://doi.org/10.1007/s11356-020-11297-8
Mainelis, G. (2020). Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Science and Technology, 54(5), 496-519. https://doi.org/10.1080/02786826.2019.1671950
Mirzaie, F., Teymori, F., Shahcheragh, S., Dobaradaran, S., Arfaeinia, H., Kafaei, R., Sahebi, S., Farjadfard, S., y Ramavandi, B. (2022). Occurrence and distribution of azithromycin in wastewater treatment plants, seawater, and sediments of the northern part of the Persian Gulf around Bushehr port: A comparison with Pre-COVID 19 pandemic. Chemosphere, 307, 135996. https://doi.org/10.1016/j.chemosphere.2022.135996
Niang, M., Reichard, J. F., Maier, A., Talaska, G., Ying, J., Santo Domingo, J., Varughese, E., Boczek, L., Huff, E., y Reponen, T. (2023). Ciprofloxacin- and azithromycin-resistant bacteria in a wastewater treatment plant. Journal of Occupational and Environmental Hygiene, 20(5-6), 219-225. https://doi.org/10.1080/15459624.2023.2205485
Osińska, A., Jachimowicz, P., Niestępski, S., Harnisz, M., y Korzeniewska, E. (2021). The effects of season and processing technology on the abundance of antibiotic resistance genes in air samples from municipal wastewater treatment and waste management plants. Environment Protection Engineering, 47(1). https://doi.org/10.37190/epe210108
Parnham, M. J., Haber, V. E., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., y Vos, R. (2014). Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacology & Therapeutics, 143(2), 225-245. https://doi.org/10.1016/j.pharmthera.2014.03.003
R Core Team. (2020). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Singh, N. K., Sanghvi, G., Yadav, M., Padhiyar, H., y Thanki, A. (2021). A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies. Journal of Hazardous Materials, 410, 124686. https://doi.org/10.1016/j.jhazmat.2020.124686
Tabrizi, A. M. A., Kakhki, S., Kakhki, S., Foroughi, M., y Azqhandi, M. H. A. (2022). Azithromycin resistance genes in Escherichia coli isolated from wastewater: Characterization and modeling-based evaluation of factors affecting the prevalence. Process Safety and Environmental Protection, 168, 32-41. https://doi.org/10.1016/j.psep.2022.09.067
Thaker, M., Spanogiannopoulos, P., y Wright, G. D. (2010). The tetracycline resistome. Cellular and Molecular Life Sciences, 67(3), 419-431. https://doi.org/10.1007/s00018-009-0172-6
Tripathi, N., y Sapra, A. (2024). Gram Staining. StatPearls [Internet]. Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK562156/
UN Water. (2020). The United Nations World Water Development Report 2020 Water and Climate Change (p. 235). UNITED NATIONS EDUCATIONAL. https://unesdoc.unesco.org
UN Water. (2022). UN World Water Development Report. United Nations. https://www.unwater.org/publication_categories/world-water-development-report/
Xie, W., Li, Y., Bai, W., Hou, J., Ma, T., Zeng, X., Zhang, L., y An, T. (2021). The source and transport of bioaerosols in the air: A review. Frontiers of Environmental Science & Engineering, 15(3), 44. https://doi.org/10.1007/s11783-020-1336-8
Zhang, M., Zuo, J., Yu, X., Shi, X., Chen, L., y Li, Z. (2018). Quantification of multi-antibiotic resistant opportunistic pathogenic bacteria in bioaerosols in and around a pharmaceutical wastewater treatment plant. Journal of Environmental Sciences, 72, 53-63. https://doi.org/10.1016/j.jes.2017.12.011
Zieliński, W., Hubeny, J., Buta-Hubeny, M., Rolbiecki, D., Harnisz, M., Paukszto, Ł., y Korzeniewska, E. (2022). Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment – A case study. Science of The Total Environment, 827, 154354. https://doi.org/10.1016/j.scitotenv.2022.154354
Zieliński, W., Korzeniewska, E., Harnisz, M., Drzymała, J., Felis, E., y Bajkacz, S. (2021). Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes – An epidemiological threat to workers and environment. Environment International, 156, 106641. https://doi.org/10.1016/j.envint.2021.106641
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista de Ciencias del Mar y Acuicultura YAKU. ISSN: 2600-5824.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.