Resistencia Antibiótica en Bioaerosoles Asociados a Lagunas de Oxidación

Autores/as

  • Luis Basurto Escuela Superior Politecnica Agropecuaria de Manabí ‘‘Manuel Felix Lopez’’. Carrera de Ingeniería Ambiental. Ecuador.
  • Joy Macias Escuela Superior Politecnica Agropecuaria de Manabí ‘‘Manuel Felix Lopez’’. Carrera de Ingeniería Ambiental. Ecuador.
  • Carlos Banchón Escuela Superior Politecnica Agropecuaria de Manabí ‘‘Manuel Felix Lopez’’. Carrera de Ingeniería Ambiental. Ecuador.

DOI:

https://doi.org/10.56124/yaku.v8i14.001

Palabras clave:

bioaerosoles, aguas residuales, resistencia antibiótica, azitromicina, tetraciclina, lagunas de oxidación

Resumen

Se evaluó la relación entre los bioaerosoles generados en la laguna de oxidación de Calceta y la presencia de bacterias resistentes a altas concentraciones de azitromicina y tetraciclina. Se recolectaron muestras de bioaerosoles dentro y fuera de la laguna, hasta una distancia de 0.5 km, utilizando cajas Petri con Agar Nutritivo y dosis de antibióticos de 75 y 150 mg/L. Los resultados mostraron que los valores más altos de UFC se registraron en los testigos, mientras que los tratamientos con antibióticos redujeron significativamente el conteo bacteriano de manera dosis-dependiente, con las dosis altas (150 mg/L) siendo más efectivas al reducir las UFC a solo 2 colonias. Además, los bioaerosoles muestreados a mayor distancia de la fuente de agua residual y expuestos a antibióticos presentaron una disminución notable en la presencia de bacterias. Las dosis altas (150 mg/L) fueron más efectivas, reduciendo los conteos a niveles casi nulos, mientras que las dosis bajas (75 mg/L) resultaron menos eficaces. El análisis microbiológico identificó estafilococos Gram-positivos resistentes a antibióticos, destacando la adaptabilidad de los microorganismos a altas concentraciones de estos compuestos. Los resultados subrayan la necesidad de estrategias para mitigar la contaminación por antibióticos, como el tratamiento avanzado de aguas residuales y el monitoreo continuo de bacterias resistentes. Además, se resalta la importancia de investigaciones en Ecuador, dada la escasa evaluación de bioaerosoles en

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmad, I., Malak, H. A., y Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101-111.

Anjali, R., y Shanthakumar, S. (2019). Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51-62. https://doi.org/10.1016/j.jenvman.2019.05.090

Bai, H., He, L.-Y., Wu, D.-L., Gao, F.-Z., Zhang, M., Zou, H.-Y., Yao, M.-S., y Ying, G.-G. (2022). Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environment International, 158, 106927. https://doi.org/10.1016/j.envint.2021.106927

Banchon, C. (2021). Airborne Bacteria from Wastewater Treatment and their Antibiotic Resistance: A Meta-Analysis. Journal of Ecological Engineering, 22(10), 205-214. https://doi.org/10.12911/22998993/142207

CDC. (2021). National Infection & Death Estimates for Antimicrobial Resistance. Centers for Disease Control and Prevention. https://shorturl.at/fgK08

CDC. (2024). Datos sobre el uso de antibióticos y la resistencia a los antimicrobianos. US Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/antibiotic-use

Chen, M., Qiu, T., Sun, Y., Song, Y., Wang, X., y Gao, M. (2019). Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols and manures from four types of animal farms in China. Environmental Science and Pollution Research, 26(23), 24213-24222. https://doi.org/10.1007/s11356-019-05672-3

Chen, Y., Yan, C., Yang, Y., y Ma, J. (2021). Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants. Science of The Total Environment, 755, 142615. https://doi.org/10.1016/j.scitotenv.2020.142615

Chopra, I., y Roberts, M. (2001). Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 65(2), 232-260. https://doi.org/10.1128/MMBR.65.2.232-260.2001

Douglas, P., Robertson, S., Gay, R., Hansell, A. L., y Gant, T. W. (2018). A systematic review of the public health risks of bioaerosols from intensive farming. International Journal of Hygiene and Environmental Health, 221(2), 134-173. https://doi.org/10.1016/j.ijheh.2017.10.019

FAO. (2023). Resistencia a los antimicrobianos. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/antimicrobial-resistance

Gaviria-Figueroa, A., Preisner, E. C., Hoque, S., Feigley, C. E., y Norman, R. S. (2019). Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. Science of The Total Environment, 686, 402-412. https://doi.org/10.1016/j.scitotenv.2019.05.454

Goddard, F. G. B., Pickering, A. J., Ercumen, A., Brown, J., Chang, H. H., y Clasen, T. (2020). Faecal contamination of the environment and child health: A systematic review and individual participant data meta-analysis. The Lancet Planetary Health, 4(9), e405-e415. https://doi.org/10.1016/S2542-5196(20)30195-9

Grossman, T. H. (2016). Tetracycline Antibiotics and Resistance. Cold Spring Harbor Perspectives in Medicine, 6(4), a025387. https://doi.org/10.1101/cshperspect.a025387

Habibi, N., Uddin, S., Behbehani, M., Kishk, M., Abdul Razzack, N., Zakir, F., y Shajan, A. (2023). Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. International Journal of Molecular Sciences, 24(7), 6756. https://doi.org/10.3390/ijms24076756

Han, I., y Yoo, K. (2020). Metagenomic Profiles of Antibiotic Resistance Genes in Activated Sludge, Dewatered Sludge and Bioaerosols. Water, 12(6), 1516. https://doi.org/10.3390/w12061516

Han, Y., Yang, T., Xu, G., Li, L., y Liu, J. (2020). Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. Journal of Hazardous Materials, 391, 122256. https://doi.org/10.1016/j.jhazmat.2020.122256

Jelić, D., y Antolović, R. (2016). From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials. Antibiotics, 5(3), 29. https://doi.org/10.3390/antibiotics5030029

Kataki, S., Patowary, R., Chatterjee, S., Vairale, M. G., Sharma, S., Dwivedi, S. K., y Kamboj, D. V. (2022). Bioaerosolization and pathogen transmission in wastewater treatment plants: Microbial composition, emission rate, factors affecting and control measures. Chemosphere, 287, 132180. https://doi.org/10.1016/j.chemosphere.2021.132180

Kowalski, M., Wolany, J., Pastuszka, J. S., Płaza, G., Wlazło, A., Ulfig, K., y Malina, A. (2017). Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14(10), 2181-2192. https://doi.org/10.1007/s13762-017-1314-2

Kusunur, A. B., Mogilipuri, S. S., Moturu, D., Benala, M., Vaiyapuri, M., Panda, S. K., George, J. C., y Badireddy, M. R. (2023). Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. Journal of Applied Microbiology, 134(4), lxad060. https://doi.org/10.1093/jambio/lxad060

Lenth, R. V. (2009). Response-Surface Methods in R , Using rsm. Journal of Statistical Software, 32(7). https://doi.org/10.18637/jss.v032.i07

Li, J., Zhou, L., Zhang, X., Xu, C., Dong, L., y Yao, M. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404-412. https://doi.org/10.1016/j.atmosenv.2015.06.030

Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z., y Wang, R. (2021). Interaction between tetracycline and microorganisms during wastewater treatment: A review. Science of The Total Environment, 757, 143981. https://doi.org/10.1016/j.scitotenv.2020.143981

Lou, M., Liu, S., Gu, C., Hu, H., Tang, Z., Zhang, Y., Xu, C., y Li, F. (2021). The bioaerosols emitted from toilet and wastewater treatment plant: A literature review. Environmental Science and Pollution Research, 28(3), 2509-2521. https://doi.org/10.1007/s11356-020-11297-8

Mainelis, G. (2020). Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Science and Technology, 54(5), 496-519. https://doi.org/10.1080/02786826.2019.1671950

Mirzaie, F., Teymori, F., Shahcheragh, S., Dobaradaran, S., Arfaeinia, H., Kafaei, R., Sahebi, S., Farjadfard, S., y Ramavandi, B. (2022). Occurrence and distribution of azithromycin in wastewater treatment plants, seawater, and sediments of the northern part of the Persian Gulf around Bushehr port: A comparison with Pre-COVID 19 pandemic. Chemosphere, 307, 135996. https://doi.org/10.1016/j.chemosphere.2022.135996

Niang, M., Reichard, J. F., Maier, A., Talaska, G., Ying, J., Santo Domingo, J., Varughese, E., Boczek, L., Huff, E., y Reponen, T. (2023). Ciprofloxacin- and azithromycin-resistant bacteria in a wastewater treatment plant. Journal of Occupational and Environmental Hygiene, 20(5-6), 219-225. https://doi.org/10.1080/15459624.2023.2205485

Osińska, A., Jachimowicz, P., Niestępski, S., Harnisz, M., y Korzeniewska, E. (2021). The effects of season and processing technology on the abundance of antibiotic resistance genes in air samples from municipal wastewater treatment and waste management plants. Environment Protection Engineering, 47(1). https://doi.org/10.37190/epe210108

Parnham, M. J., Haber, V. E., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., y Vos, R. (2014). Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacology & Therapeutics, 143(2), 225-245. https://doi.org/10.1016/j.pharmthera.2014.03.003

R Core Team. (2020). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Singh, N. K., Sanghvi, G., Yadav, M., Padhiyar, H., y Thanki, A. (2021). A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies. Journal of Hazardous Materials, 410, 124686. https://doi.org/10.1016/j.jhazmat.2020.124686

Tabrizi, A. M. A., Kakhki, S., Kakhki, S., Foroughi, M., y Azqhandi, M. H. A. (2022). Azithromycin resistance genes in Escherichia coli isolated from wastewater: Characterization and modeling-based evaluation of factors affecting the prevalence. Process Safety and Environmental Protection, 168, 32-41. https://doi.org/10.1016/j.psep.2022.09.067

Thaker, M., Spanogiannopoulos, P., y Wright, G. D. (2010). The tetracycline resistome. Cellular and Molecular Life Sciences, 67(3), 419-431. https://doi.org/10.1007/s00018-009-0172-6

Tripathi, N., y Sapra, A. (2024). Gram Staining. StatPearls [Internet]. Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK562156/

UN Water. (2020). The United Nations World Water Development Report 2020 Water and Climate Change (p. 235). UNITED NATIONS EDUCATIONAL. https://unesdoc.unesco.org

UN Water. (2022). UN World Water Development Report. United Nations. https://www.unwater.org/publication_categories/world-water-development-report/

Xie, W., Li, Y., Bai, W., Hou, J., Ma, T., Zeng, X., Zhang, L., y An, T. (2021). The source and transport of bioaerosols in the air: A review. Frontiers of Environmental Science & Engineering, 15(3), 44. https://doi.org/10.1007/s11783-020-1336-8

Zhang, M., Zuo, J., Yu, X., Shi, X., Chen, L., y Li, Z. (2018). Quantification of multi-antibiotic resistant opportunistic pathogenic bacteria in bioaerosols in and around a pharmaceutical wastewater treatment plant. Journal of Environmental Sciences, 72, 53-63. https://doi.org/10.1016/j.jes.2017.12.011

Zieliński, W., Hubeny, J., Buta-Hubeny, M., Rolbiecki, D., Harnisz, M., Paukszto, Ł., y Korzeniewska, E. (2022). Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment – A case study. Science of The Total Environment, 827, 154354. https://doi.org/10.1016/j.scitotenv.2022.154354

Zieliński, W., Korzeniewska, E., Harnisz, M., Drzymała, J., Felis, E., y Bajkacz, S. (2021). Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes – An epidemiological threat to workers and environment. Environment International, 156, 106641. https://doi.org/10.1016/j.envint.2021.106641

Descargas

Publicado

2025-03-28

Cómo citar

Basurto, L., Macias, J., & Banchón, C. (2025). Resistencia Antibiótica en Bioaerosoles Asociados a Lagunas de Oxidación. Revista De Ciencias Del Mar Y Acuicultura YAKU. ISSN: 2600-5824., 8(14), 2–15. https://doi.org/10.56124/yaku.v8i14.001