Applying Principal Component Analysis to the Composition of Ruminant Feeds

Authors

  • Fabricio Javier Rivadeneira Zambrano Universidad Laica Eloy Alfaro de Manabí ULEAM
  • Rodolfo Andrés Rivadeneira Zambrano Universidad Técnica de Manabí UTM
  • Silvia Mercedes Carvajal Rivadeneira Unidad Educativa Julio Pierregrosse UEJP
  • Viviana Katiuska García Macías Universidad Laica Eloy Alfaro de Manabí ULEAM

DOI:

https://doi.org/10.56124/encriptar.v7i14.008

Keywords:

food composition, principal component analysis, dimension reduction

Abstract

The following paper presents the application of the Principal Component Analysis (PCA) method used to analyze quantitative variables for dimension reduction by decomposing the correlation matrix into its eigenvectors and eigenvalues, although other decomposition methods such as SVD (Singular Value Decomposition) can be used.

This method is applied to data relating to the nutritional composition of 150 foods or ingredients for ruminants. The composition of these foods analyzed in the laboratory forms a table of 12 variables or columns, of which 8 are quantitative variables used in the PCA analysis, which represent the main nutrients needed by ruminants, such as: percentage of Dry Matter, Dry Matter Digestibility, Crude Protein, percentage of Rumen Degradable Protein, Neutral Detergent Fiber, percentage of Fiber, Calcium, Phosphorus and Metabolic Energy. The result is a reduction in the size of the feed composition table and four main axes or components are identified as important nutrient factors that affect the quality of feed for ruminants.

Downloads

Download data is not yet available.

References

Bartlett, M. S. (1951). The Effect of Standardization on a chi square Approximation in Factor Analysis. Biometrika(38), 337-344.

Chibisa, G.E., & Oba. (2020), M. Nutrition and Feeding of Ruminants.1ª edición. Wageningen Academic Publishers.

Fernández, H. H. (2010). Obtenido de Sitio Argentino de Producción Animal: https://www.produccion-animal.com.ar/tablas_composicion_alimentos/46-Tabla.pdf

Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. 3ª edición. Sebastopol, CA: O'Reilly Media.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, and 498–520.

Moraes, L.E., & Fadel, J.G. (2020). Feed Efficiency in the Beef Industry.

ª edición. Hoboken, NJ: Wiley-Blackwell.

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 2(11), 559–572. doi:10.1080/14786440109462720

Rivadeneira, F. J., Figueiredo, A. M., Figueiredo, F. O., Carvajal, S. M., & Rivadeneira, R. A. (2016). Analysis of Well-Being In OECD Countries through Statis Methodology. HOLOS, 7(32), 335-351. doi:10.15628/holos.2016.5003

Published

2024-11-20

How to Cite

Rivadeneira Zambrano, F. J. ., Rivadeneira Zambrano, R. A. ., Carvajal Rivadeneira, S. M., & García Macías, V. K. (2024). Applying Principal Component Analysis to the Composition of Ruminant Feeds. Scientific Journal of Informatics ENCRYPT - ISSN: 2737-6389., 7(14), 153–168. https://doi.org/10.56124/encriptar.v7i14.008