Machine Learning en la Optimización del Consumo de Energía en Edificios Inteligentes: Tendencias y Desafíos
DOI:
https://doi.org/10.56124/encriptar.v8i15.011Palabras clave:
energía eléctrica, consumo, previsión, optimizaciónResumen
A la vanguardia de la revolución tecnológica y sostenible, los edificios inteligentes destacan como modelos de eficiencia y confort, con un crecimiento previsto de 45 millones en 2022 a 115 millones en 2026. Estos edificios utilizan tecnología avanzada para optimizar los recursos, mejorando la seguridad y el bienestar de sus ocupantes. Sin embargo, enfrentan desafíos en infraestructura urbana, equilibrando precisión, escalabilidad y adaptabilidad en el campo de Internet de las cosas. Se enfatiza la importancia de los datos y el aprendizaje automático para predecir y mejorar el consumo de energía, abordando la necesidad de modelos predictivos eficientes y prácticos que manejen datos complejos y capturen patrones espaciotemporales. Se identifican lagunas en la comparación estandarizada de modelos, la eficiencia de los algoritmos predictivos y la transformación de la investigación en aplicaciones prácticas. Este estudio plantea preguntas clave sobre la gestión de recursos y la optimización del consumo de energía a través del aprendizaje automático, proponiendo objetivos específicos como la recopilación de datos y la evaluación de modelos para validar la efectividad y mejorar la vida de los ocupantes, así como contribuir al desarrollo económico, ambiental y social. impacto. Se sigue una metodología sistemática para la revisión de la literatura, empleando la declaración PRISMA, y se plantean preguntas de investigación para guiar la identificación de tendencias y respuestas al uso del aprendizaje automático para predecir el consumo de energía en edificios inteligentes.
Descargas
Citas
Abaimov, S., & Martellini, M. (2022). Understanding Machine Learning. In Advanced Sciences and Technologies for Security Applications (pp. 15–89). Springer. https://doi.org/10.1007/978-3-030-91585-8_2
Ahmad, I., Shahabuddin, S., Sauter, T., Harjula, E., Kumar, T., Meisel, M., Juntti, M., & Ylianttila, M. (2021). The Challenges of Artificial Intelligence in Wireless Networks for the Internet of Things: Exploring Opportunities for Growth. IEEE Industrial Electronics Magazine, 15(1), 16–29. https://doi.org/10.1109/MIE.2020.2979272
Ahmed, M. A., Chavez, S. A., Eltamaly, A. M., Garces, H. O., Rojas, A. J., & Kim, Y.-C. (2022). Toward an Intelligent Campus: IoT Platform for Remote Monitoring and Control of Smart Buildings. Sensors, 22(23). https://doi.org/10.3390/s22239045
Al-Shargabi, A. A., Almhafdy, A., Ibrahim, D. M., Alghieth, M., & Chiclana, F. (2022). Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures. Journal of Building Engineering, 54. https://doi.org/10.1016/j.jobe.2022.104577
Annadurai, C., Nelson, I., Devi, K. N., Manikandan, R., Jhanjhi, N. Z., Masud, M., & Sheikh, A. (2022). Biometric Authentication-Based Intrusion Detection Using Artificial Intelligence Internet of Things in Smart City. Energies, 15(19). https://doi.org/10.3390/en15197430
Balaji, S., & Karthik, S. (2023). Energy Prediction in IoT Systems Using Machine Learning Models. Computers, Materials and Continua, 75(1), 443–459. https://doi.org/10.32604/cmc.2023.035275
Barker, O. (2020). Realizing the Promise of the Internet of Things in Smart Buildings. Computer, 53(2), 76–79. https://doi.org/10.1109/MC.2019.2952419
Bedi, G., Venayagamoorthy, G. K., & Singh, R. (2020). Development of an IoT-driven building environment for prediction of electric energy consumption. IEEE Internet of Things Journal, 7(6), 4912–4921. https://doi.org/10.1109/JIOT.2020.2975847
Blechmann, S., Sowa, I., Schraven, M. H., Streblow, R., Müller, D., & Monti, A. (2023). Open source platform application for smart building and smart grid controls. Automation in Construction, 145. https://doi.org/10.1016/j.autcon.2022.104622
Bourdeau, M., qiang Zhai, X., Nefzaoui, E., Guo, X., & Chatellier, P. (2019). Modeling and forecasting building energy consumption: A review of data-driven techniques. In Sustainable Cities and Society (Vol. 48). Elsevier Ltd. https://doi.org/10.1016/j.scs.2019.101533
Broday, E. E., & da Silva, M. C. G. (2023). The role of internet of things (IoT) in the assessment and communication of indoor environmental quality (IEQ) in buildings: a review. Smart and Sustainable Built Environment, 12(3), 584–606. https://doi.org/10.1108/SASBE-10-2021-0185
Carli, R., Cavone, G., Othman, S. B., & Dotoli, M. (2020). IoT based architecture for model predictive control of HVAC systems in smart buildings. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030781
Casado-Vara, R., Rey, A. M., Affes, S., Prieto, J., & Corchado, J. M. (2020). IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Generation Computer Systems, 102, 965–977. https://doi.org/10.1016/j.future.2019.09.042
Choi, H.-S., & Rhee, W.-S. (2014). Iot-based user-driven service modeling environment for a smart space management system. Sensors (Switzerland), 14(11), 22039–22064. https://doi.org/10.3390/s141122039
Chou, J.-S., & Tran, D.-S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy, 165, 709–726. https://doi.org/10.1016/j.energy.2018.09.144
Do, H., & Cetin, K. S. (2018). Residential Building Energy Consumption: a Review of Energy Data Availability, Characteristics, and Energy Performance Prediction Methods. Current Sustainable/Renewable Energy Reports, 5(1), 76 – 85. https://doi.org/10.1007/s40518-018-0099-3
Dylan, T., Durrant, A. C., & Cerci, S. (2021). Lanterns configuring a digital resource to inspire preschool children’s free play outdoors. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3411764.3445745
González-Vidal, A., Jiménez, F., & Gómez-Skarmeta, A. F. (2019). A methodology for energy multivariate time series forecasting in smart buildings based on feature selection. Energy and Buildings, 196, 71–82. https://doi.org/10.1016/j.enbuild.2019.05.021
Hernández-Callejo, L., Gómez, A., Nesmachnow, S., Leite, V., Prieto, J., & Ferreira, Â. (n.d.). CITIES Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship. www.mdpi.com/journal/applsci
Hoy, M. B. (2016). Smart Buildings: An Introduction to the Library of the Future. Medical Reference Services Quarterly, 35(3), 326–331. https://doi.org/10.1080/02763869.2016.1189787
Jiang, J., Liu, F., Ng, W. W. Y., Tang, Q., Wang, W., & Pham, Q.-V. (2022). Dynamic Incremental Ensemble Fuzzy Classifier for Data Streams in Green Internet of Things. IEEE Transactions on Green Communications and Networking, 6(3), 1316–1329. https://doi.org/10.1109/TGCN.2022.3151716
Juniper Research. (2024, November 10). Smart Buildings Market Trends, Size, Strategies 2024-29.
Khanna, A., Arora, S., Chhabra, A., Bhardwaj, K. K., & Sharma, D. K. (2019). IoT architecture for preventive energy conservation of smart buildings. In Studies in Systems, Decision and Control (Vol. 206, pp. 179–208). Springer International Publishing. https://doi.org/10.1007/978-981-13-7399-2_8
Khaoula, E., Amine, B., & Mostafa, B. (2023). Evaluation and Comparison of Energy Consumption Prediction Models Case Study: Smart Home. In Lecture Notes on Data Engineering and Communications Technologies (Vol. 164, pp. 179–187). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-27762-7_17
Kim, J., Jeon, Y., & Kim, H. (2018). The intelligent IoT common service platform architecture and service implementation. Journal of Supercomputing, 74(9), 4242–4260. https://doi.org/10.1007/s11227-016-1845-1
Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X., & Singh, P. (2021). Secure and energy-efficient smart building architecture with emerging technology IoT. Computer Communications, 176, 207–217. https://doi.org/10.1016/j.comcom.2021.06.003
Kuo, S.-Y., Huang, X.-R., & Chen, L.-B. (2022). Smart ports: Sustainable smart business port operation schemes based on the Artificial Intelligence of Things and blockchain technologies. IEEE Potentials, 41(6), 32–37. https://doi.org/10.1109/MPOT.2022.3198808
Lee, C.-T., Chen, L.-B., Chu, H.-M., & Hsieh, C.-J. (2022). Design and Implementation of a Leader-Follower Smart Office Lighting Control System Based on IoT Technology. IEEE Access, 10, 28066–28079. https://doi.org/10.1109/ACCESS.2022.3158494
Li, K., Zhao, J., Hu, J., & Chen, Y. (2022). Dynamic energy efficient task offloading and resource allocation for NOMA-enabled IoT in smart buildings and environment. Building and Environment, 226. https://doi.org/10.1016/j.buildenv.2022.109513
Li, W., Li, H., & Wang, S. (2021). An event-driven multi-agent based distributed optimal control strategy for HVAC systems in IoT-enabled smart buildings. Automation in Construction, 132. https://doi.org/10.1016/j.autcon.2021.103919
Louridas, P., & Ebert, C. (2016). Machine Learning. IEEE Software, 33(5), 110–115. https://doi.org/10.1109/MS.2016.114
Maatoug, A., Belalem, G., & Mahmoudi, S. (2023). A location-based fog computing optimization of energy management in smart buildings: DEVS modeling and design of connected objects. Frontiers of Computer Science, 17(2). https://doi.org/10.1007/s11704-021-0375-z
Medhat, M., El-Shafey, K., & Rashed, A. (2020). IoT-fog based smart-building security system design and performance evaluation. Journal of Computer Science, 16(9), 1325–1333. https://doi.org/10.3844/jcssp.2020.1325.1333
Metallidou, C. K., Psannis, K. E., & Egyptiadou, E. A. (2020). Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access, 8, 63679–63699. https://doi.org/10.1109/ACCESS.2020.2984461
Moura, P., Moreno, J. I., López, G. L., & Alvarez-Campana, M. (2021). IoT platform for energy sustainability in university campuses. Sensors (Switzerland), 21(2), 1–22. https://doi.org/10.3390/s21020357
Pašek, J., & Sojková, V. (2018). Facility management of smart buildings. International Review of Applied Sciences and Engineering, 9(2), 181–187. https://doi.org/10.1556/1848.2018.9.2.15
Rajamohan, K., Rangasamy, S., Pinto, N. A., Manoj, B. E., Mukherjee, D., & Shukla, J. (2023). IoVST: Internet of vehicles and smart traffic - Architecture, applications, and challenges. In Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries (pp. 292–315). IGI Global. https://doi.org/10.4018/978-1-6684-8785-3.ch015
Rajaoarisoa, L., M’Sirdi, N. K., Sayed-Mouchaweh, M., & Clavier, L. (2023). Decentralized fault-tolerant controller based on cooperative smart-wireless sensors in large-scale buildings. Journal of Network and Computer Applications, 214. https://doi.org/10.1016/j.jnca.2023.103605
Rico, A., Smuts, C., & Larson, K. (2022). Chameleon: Adaptive Sensor Intelligence for Smart Buildings. IEEE Internet of Things Journal, 9(19), 19362–19372. https://doi.org/10.1109/JIOT.2022.3165349
Shi, C., Liu, P., Chen, Y., Zhou, Z., Yang, J., Zhao, C., Chen, B., Yang, S., & Mumtaz, S. (2022). Adversarial learning-based multi-timescale network resource management in multi-mode green IoT network for smart building. IET Communications, 16(14), 1739–1751. https://doi.org/10.1049/cmu2.12441
Silva, C., Costa, N., Grilo, C., & Veloz, J. (2018). JavaScript middleware for mobile agents support on desktop and mobile platforms. In Advances in Intelligent Systems and Computing (Vol. 721). https://doi.org/10.1007/978-3-319-73450-7_70
Somu, N., R, G. R. M., & Ramamritham, K. (2021). A deep learning framework for building energy consumption forecast. Renewable and Sustainable Energy Reviews, 137. https://doi.org/10.1016/j.rser.2020.110591
Sun, J., Kuruganti, T., Fricke, B., Xuan, S., Li, Y., Wilkerson, W., & Cunningham, C. (2022). Automated fault detection and diagnosis deployment Internet of Things solution for building energy system. Journal of Building Engineering, 61. https://doi.org/10.1016/j.jobe.2022.105291
Sun, Y., Wu, T.-Y., Li, X., & Guizani, M. (2017). A Rule Verification System for Smart Buildings. IEEE Transactions on Emerging Topics in Computing, 5(3), 367–379. https://doi.org/10.1109/TETC.2016.2531288
Wang, M., Yeh, W.-C., Chu, T.-C., Zhang, X., Huang, C.-L., & Yang, J. (2018). Solving multi-objective fuzzy optimization in wireless smart sensor networks under uncertainty using a hybrid of IFR and SSO algorithm. Energies, 11(9). https://doi.org/10.3390/en11092385
Wang, W.-C., Dwijendra, N. K. A., Sayed, B. T., Alvarez, J. R. N., Al-Bahrani, M., Alviz-Meza, A., & Cárdenas-Escrocia, Y. (2023). Internet of Things Energy Consumption Optimization in Buildings: A Step toward Sustainability. Sustainability (Switzerland), 15(8). https://doi.org/10.3390/su15086475
Wang, Z., Liu, J., Zhang, Y., Yuan, H., Zhang, R., & Srinivasan, R. S. (2021). Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles. In Renewable and Sustainable Energy Reviews (Vol. 143). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.110929
Wang, Z., & Srinivasan, R. S. (2017). A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. In Renewable and Sustainable Energy Reviews (Vol. 75, pp. 796–808). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.10.079
Yan, Y. (2022). Machine Learning Fundamentals. In Machine Learning in Chemical Safety and Health: Fundamentals with Applications (pp. 19–46). wiley. https://doi.org/10.1002/9781119817512.ch2
Zekić-Sušac, M., Has, A., & Knežević, M. (2021). Predicting energy cost of public buildings by artificial neural networks, CART, and random forest. Neurocomputing, 439, 223–233. https://doi.org/10.1016/j.neucom.2020.01.124
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Científica de Informática ENCRIPTAR - ISSN: 2737-6389.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.