Corrosion Rate Analysis of Anticorrosive Coatings on A-36 Steel.

Corrosion Rate Analysis of Anticorrosive Coatings on A-36 Steel

Authors

DOI:

https://doi.org/10.56124/finibus.v7i14.005

Keywords:

A-36 carbon steel, Coatings, Corrosion, Salt spray chamber.

Abstract

This study focused on analyzing the influence of three types of organic coatings on the corrosion rate of A-36 carbon steel. For this purpose, the coated samples were exposed to a salt spray chamber, simulating an aggressive environment, and their anticorrosion behavior was evaluated. Additionally, the impact of cleaning prior to the application of the coatings was investigated. The testing process was based on ASTM B117, which establishes the necessary parameters for accelerated corrosion testing in salt spray chambers, including the laboratory controls required to validate the results.The corrosion rate was calculated following the ASTM G1 standard, allowing comparison of the effectiveness of each coating in protecting the steel. Additionally, a visual inspection of the coatings was performed according to ASTM D610 to determine their corrosion rate.

Downloads

Download data is not yet available.

Author Biographies

Liliana Lizbeth López López, Universidad Técnica de Ambato

Master in Civil Engineering, specialising in Metallic Structures, lecturer at the Technical University of Ambato.

Carlos Patricio Navarro Peñaherrera, Universidad Técnica de Ambato

Magister En Estructuras Sismo - Resistentes, professor at the Technical University of Ambato.

Marco Eduardo Díaz Sánchez, Corporación Electrica del Ecuador

Master in Mechanical Design

References

Arceo, D., Reyes, J., Galván, R., & Orozco, R. (2021). Protección anticorrosiva de un convertidor de óxido natural (Mimosa tenuiflora) aplicado sobre productos de corrosión de un acero AISI 1018. Nova Scientia, 13(27). https://doi.org/10.21640/ns.v13i27.3021

ASTM B117 Standard Practice for Operating Salt Spray (Fog) Apparatus 1. (2011). https://doi.org/10.1520/B0117-11

ASTM-D610: Standard Test Method for Evaluating Degree of Rusting on Painted Steel Surfaces. (2016). ASTM International.

ASTM-G1-03-2017-e1: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. (2017).

Baboian, R. (2006). Corrosion Books: Corrosion Tests and Standards ‐ Application and Interpretation. Materials and Corrosion, 57(12), 958–958.

https://doi.org/10.1002/maco.200690120

Chiriboga, C., Maldonado, J., & Chiriboga, B. (2022). Influencia de la corrosión en varillas de acero de refuerzo, y sus efectos en la resistencia estructural de edificaciones. MQRInvestigar, 6(4), 396–419. https://doi.org/10.56048/mqr20225.6.4.2022.396-419

Correa, E., Botero, C., Restrepo, A., & Delgado, J. (2008). Corrosión del Acero al Carbono, Acero Galvanizado y Aluminio en Diferentes Atmósferas Colombianas. Scientia et Technical, 36(ISSN 0122-1701), 7–12. https://www.redalyc.org/pdf/849/84903603.pdf

Jiménez, M. & Navarrete, M. (2018). Perfil ecuatoriano de las empresas metalmecánicas. Revista Científica, Dominio de Las Ciencias, 4, 585–602. https://doi.org/10.23857/dom.cien.pocaip.2017.4.1.enero.585-602

Mao, L., Zhu, H., Chen, L., Zhou, H., Yuan, G., & Song, C. (2020). Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application. Journal of Materials Research and Technology, 9(3), 6409–6419. https://doi.org/10.1016/j.jmrt.2020.04.024

NACE International. (2001). Petroleum and natural gas industries: materials for use in H2S-containing environments in oil and gas production. NACE.

Oliveira, J. D., Rocha, R. C., & Galdino, A. G. D. S. (2019). Effect of Al2O3 particles on the adhesion, wear, and corrosion performance of epoxy coatings for protection of umbilical cables accessories for subsea oil and gas production systems. Journal of Materials Research and Technology, 8(2), 1729–1736. https://doi.org/10.1016/j.jmrt.2018.10.016

Pierre R. Pierre. (2000). Handbook of corrosion engineering. McGraw-Hill.

Rodríguez, J. F., Rodríguez, E., Suárez, L. F., Velasco, K. T., Ramos, C., & Malagón, E. (2020). Eficiencia de un inhibidor verde extraído de la cáscara de la sandía en la corrosión del acero estructural A36 evaluado en medios ácido y salino. Revista ION, 33(1). https://doi.org/10.18273/revion.v33n1-2020003

Viganò, F., Cristiani, C., & Annoni, M. (2017). Ceramic sponge Abrasive Waterjet (AWJ) precision cutting through a temporary filling procedure. Journal of Manufacturing Processes, 28, 41–49. https://doi.org/10.1016/j.jmapro.2017.05.014

Yépez Ambar. (2017). Estudio de Recubrimientos Anticorrosivos Aplicados Sobre Acero A-36 y su Incidencia en la Tasa de Corrosión Utilizando la Cámara de Niebla Salina. Universidad Técnica de Ambato.

Published

2024-07-31

How to Cite

Yépez Intriago, A., López López, L. L. ., Navarro Peñaherrera, C. P., & Díaz Sánchez, M. E. (2024). Corrosion Rate Analysis of Anticorrosive Coatings on A-36 Steel.: Corrosion Rate Analysis of Anticorrosive Coatings on A-36 Steel. Revista Científica Y Arbitrada Del Observatorio Territorial, Artes Y Arquitectura: FINIBUS - ISSN: 2737-6451., 7(14), 49–58. https://doi.org/10.56124/finibus.v7i14.005