IoT e-tool device using CoAP protocol for monitoring occupational health conditions.
IoT e-tool device using CoAP protocol for monitoring occupational health conditions.
DOI:
https://doi.org/10.56124/finibus.v7i14.014Keywords:
occupational health and safety, occupational risk, IoT, Node JS, CoAP, , e-toolAbstract
The strategic importance of IoT-based e-tools in terms of occupational health and safety lies in their contribution to identifying workplace hazards through the management of information from work environments and their environmental factors, in accordance with WHO guidelines and international regulations. The methodology for developing a prototype includes exploring communication protocols, designing a comprehensive architecture (hardware and software), implementation, and functionality testing. With the assistance of the agile XP (Extreme Programming) method, the front-end (user interface) of the application was developed using Flutter. CoAP was chosen for data transmission due to its efficiency in wireless networks and ability to handle asynchronous communications. Environmental measurements of temperature, lighting, air quality, altitude, pressure, and humidity were obtained using electronic sensors connected to the PCB of the ATmega32U4 microcontroller, with an expressif microcontroller used in the wireless connectivity interface as a Wi-Fi hotspot. Node JS was used to configure the system's back-end (programming interface) using two servers, the first for receiving data from the prototype via CoAP, and a resource server was developed to supply information to the application. After a period of operation in different areas, the collected data could be compared against recommended occupational health levels.
Downloads
References
Archana, N. M. (2024). IoT based Health Monitoring System. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 8(3), 1-11. http://dx.doi.org/10.55041/IJSREM29311
Ashar Tariq, M. (2020). Enhancements and Challenges in CoAP. Sensors 2020, 20(21). https://www.mdpi.com/1424-8220/20/21/6391. https://doi.org/10.3390/s20216391
Ayala, M. (2022, August 28). Método comparativo: qué es, características, pasos, ejemplos. Lifeder. https://www.lifeder.com/metodo-comparativo/
Delgado, L., Borroto, E., & Moreira, E. (2020). Normativas en seguridad y salud ocupacional y los problemas éticos. Revista San Gregorio, 1(40), 1. https://doi.org/10.36097/rsan.v1i40.1406
European Agency for Safety and Health at Work. (2020). Herramientas electrónicas en seguridad y salud en el trabajo | Safety and health at work EU-OSHA. EU-OSHA. https://osha.europa.eu/es/themes/osh-e-tools
Instituto Nacional de Seguridad y Salud en el Trabajo (INSST). (2023). Estrategia Española de Seguridad y Salud en el Trabajo, 2023-2027. https://www.insst.es/noticias-insst/estrategia-espa%C3%B1ola-de-seguridad-y-salud-en-el-trabajo-2023-2027
Işıkdağ, Ü. (2020). An IOT architecture for facilitating integration of geoinformation. International Journal of Engineering and Geosciences, 5(1), 15-25. https://doi.org/10.26833/ijeg.587023
Khanna, A., & Kaur, S. (2020). Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wireless Personal Communications, 114, 1687–1762. https://doi.org/10.1007/s11277-020-07446-4
La Duke, P. (2019, December 16). lighting_levels_HSME_2018. Health and Safety International. Retrieved July 3, 2024, from https://www.healthandsafetyinternational.com/article/1843821/lighting-levels
Maestre, C. (2023, noviembre 30). Estudio de las casuísticas operativas con ventilación natural para garantizar la calidad del aire interior en lugares de trabajo que permitan un entorno salubre [Tesis Maestría]. In Depósito de Investigación de la Universidad de Sevilla. Sevilla, España.
Miao, H.-Y., & Yang, C. T. (2022). On Construction of a Campus Outdoor Air and Water Quality Monitoring System Using LoRaWAN. Innovative Applications of Big Data and Cloud Computing, 12(10), 5018. https://doi.org/10.3390/app12105018
Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189. https://doi.org/10.1016/j.compag.2021.106352
Tiwari, D., Prasad, D., & Guleria, K. (2021). IoT based Smart Healthcare Monitoring Systems: A Review. International Conference on Signal Processing, Computing and Control (ISPCC), 6th, pp. 465-469, https://doi.org/10.1109/ISPCC53510.2021.9609393
Vallejo-Sanchez, D., Muñoz-García, A., & Chaverra-Zuleta, E. (2024). Development of an IoT architecture for environmental monitoring:integrating open source technologies with application projection inthe mining sector. DYNA, 9(231), 163–168. https://doi.org/10.15446/dyna.v91n231.112093
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Científica y Arbitrada del Observatorio Territorial, Artes y Arquitectura: FINIBUS - ISSN: 2737-6451.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.