Nanosílice derivada de hojas de maíz como material suplementario sostenible para morteros: síntesis, caracterización y rendimiento mecánico
DOI:
https://doi.org/10.56124/finibus.v9i17.007Palabras clave:
cemento, nanosílice, hojas de maíz, residuos agrícolas, resistencia a la compresión, morteros sosteniblesResumen
El cemento se ha considerado durante mucho tiempo el aglutinante esencial de la construcción moderna, pero el precio que se paga por esta comodidad es alto. Se estima que la producción de cemento Portland ordinario contribuye cerca del 8% de las emisiones globales de CO₂, lo que explica por qué tantos esfuerzos de investigación ahora se concentran en reducir su impacto. Una de las direcciones que ha atraído interés es el uso de residuos agrícolas, materiales que generalmente se desechan después de la cosecha y que, en muchos casos, contienen cantidades significativas de sílice amorfa. En el presente estudio, se seleccionaron hojas de maíz (Zea mays L.) como materia prima. Este residuo es abundante en Ecuador, pero rara vez encuentra alguna aplicación técnica. Las hojas se calcinaron primero a 600 °C, luego se lavaron con ácido y se molieron hasta obtener nanosílice con tamaños de partícula en el rango nanométrico. Se prepararon morteros en los que el cemento se reemplazó parcialmente por 0,25%, 0,5% y 1,0% de esta nanosílice. Tras probar la resistencia a la compresión a los 1, 3, 7, 28 y 90 días, la tendencia se hizo evidente: el contenido más bajo, 0,25 %, presentó el mejor rendimiento, alcanzando un aumento del 27 % a los 90 días en comparación con la mezcla de control. Los contenidos más altos no produjeron una mejora adicional, lo que podría estar relacionado con la aglomeración de partículas y la dispersión limitada. Los análisis microestructurales (SEM, TEM, XRD, EDS) confirmaron la presencia de una matriz más densa y homogénea, y las mediciones del ángulo de contacto sugirieron una menor absorción de agua. Estos resultados demuestran que la nanosílice obtenida de las hojas de maíz puede funcionar como un aditivo sostenible para morteros, a la vez que proporciona una forma de valorizar un residuo agrícola abundante.
Descargas
Citas
AlTawaiha, H., Alhomaidat, F., & Eljufout, T. (2023). A review of the effect of nano-silica on the mechanical and durability properties of cementitious composites. Infrastructures, 8, 132. https://doi.org/10.3390/infrastructures8090132
Althoey, F., Zaid, O., Martínez-García, R., Alsharari, F., Ahmed, M., & Arbili, M. M. (2023). Impact of nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review. Case Studies in Construction Materials, 18, e01997. https://doi.org/10.1016/j.cscm.2023.e01997
Alvansazyazdi, M., Alvarez-Rea, F., Pinto-Montoya, J., Khorami, M., Bonilla-Valladares, P. M., Debut, A., Feizbahr, M. (2023). Evaluating the influence of hydrophobic nano-silica on cement mixtures for corrosion-resistant concrete in green building and sustainable urban development. Sustainability, 15, 15311. https://doi.org/10.3390/su152115311
Alvansazyazdi, M., Chandi Paucar, J. E., Chávez Guamán, F. E., Bonilla Valladares, P. M., Patrice Martial, D. A., Santamaria Carrera, J. L., Cadena Perugachi, H. A., Logacho Morales, A. E. (2025). Valorización del bagazo de caña de azúcar en nanosílice: Ruta optimizada para mejorar la resistencia y la sostenibilidad en morteros de cemento. Ingenio, 8, 95–106. https://doi.org/10.29166/ingenio.v8i2.8164
Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10, 195–217. https://doi.org/10.5194/essd-10-195-2018
Anysz, H., Rosicki, Ł., & Narloch, P. (2024). Compressive strengths of cube vs. cored specimens of cement stabilized rammed earth compared with ANOVA. Applied Sciences, 14, 5746. https://doi.org/10.3390/app14135746
Aswin, M., Maranatha, E. S., & Nola, L. (2021). Effect of use of corn leaf ash on concrete compressive strength. AJEAS, 1122, 012026.
Basnet, S., Shah, S., Joshi, R., & Pandit, R. (2022). Investigation of compressive strength of cement/silica nanocomposite using synthesized silica nanoparticles from sugarcane bagasse ash. International Journal of Nanoscience and Nanotechnology, 18, 93–98.
Camargo-Pérez, N. R., Abellán-García, J., & Fuentes, L. (2023). Use of rice husk ash as a supplementary cementitious material in concrete mix for road pavements. Journal of Materials Research and Technology, 25, 6167–6182. https://doi.org/10.1016/j.jmrt.2023.07.033
Cheng, Y., Qin, C., & Huang, Q. (2024). Hydrophobic cement: Concept, preparation and application. Construction and Building Materials, 449, 138444. https://doi.org/10.1016/j.conbuildmat.2024.138444
Dahliyanti, A., Yunitama, D. A., Rofiqoh, I. M., & Mustapha, M. (2022). Synthesis and characterization of silica xerogel from corn husk waste as cationic dyes adsorbent. F1000Research, 11, 305. https://doi.org/10.12688/f1000research.75979.1
Du, S., Wu, J., AlShareedah, O., & Shi, X. (2019). Nanotechnology in cement-based materials: A review of durability, modeling, and advanced characterization. Nanomaterials, 9, 1213. https://doi.org/10.3390/nano9091213
Francioso, V., Lemos-Micolta, E. D., Elgaali, H. H., Moro, C., Rojas-Manzano, M. A., & Velay-Lizancos, M. (2024). Valorization of sugarcane bagasse ash as an alternative SCM: Effect of particle size, temperature-crossover effect mitigation & cost analysis. Sustainability, 16, 9370. https://doi.org/10.3390/su16219370
Geng, Z., Zhang, Y., Zhou, Y., Duan, J., & Yu, Z. (2025). Effect of nano-SiO2 on the hydration, microstructure, and mechanical performances of solid waste-based cementitious materials. Materials, 18, 2636. https://doi.org/10.3390/ma18112636
Habert, G., & Ouellet-Plamondon, C. (2016). Recent update on the environmental impact of geopolymers. RILEM Technical Letters, 1, 17–23. https://doi.org/10.21809/rilemtechlett.2016.6
Hasan, N. M. S., Sobuz, M. H. R., Khan, M. M. H., Mim, N. J., Meraz, M. M., Datta, S. D., Rana, M. J., Saha, A., Akid, A. S. M., Mehedi, M. T., et al. (2022). Integration of rice husk ash as supplementary cementitious material in the production of sustainable high-strength concrete. Materials, 15, 8171. https://doi.org/10.3390/ma15228171
Hossain, S. S., Roy, P. K., & Bae, C.-J. (2021). Utilization of waste rice husk ash for sustainable geopolymer: A review. Construction and Building Materials, 310, 125218. https://doi.org/10.1016/j.conbuildmat.2021.125218
Huang, C., Nantung, T., Feng, Y., & Lu, N. (2024). Effect of colloidal nano silica on the freeze-thaw resistance and air void system of Portland cement concrete. Journal of Building Engineering, 86, 108888. https://doi.org/10.1016/j.jobe.2024.108888
Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1, 194–216. https://doi.org/10.1016/j.ijsbe.2013.05.001
Kaura, J. M., Lawan, A., Abubakar, I., & Ibrahim, A. (2014). Effect of nanosilica on mechanical and microstructural properties of cement mortar. Jordan Journal of Civil Engineering, 8.
Liu, D., Kaja, A., Chen, Y., Brouwers, H. J. H., & Yu, Q. (2022). Self-cleaning performance of photocatalytic cement mortar: Synergistic effects of hydration and carbonation. Cement and Concrete Research, 162, 107009. https://doi.org/10.1016/j.cemconres.2022.107009
Liu, H., Li, Q., Su, D., Yue, G., & Wang, L. (2021). Study on the influence of nanosilica sol on the hydration process of different kinds of cement and mortar properties. Materials (Basel), 14, 3653. https://doi.org/10.3390/ma14133653
Li, X., Yang, W., Wan, S., Li, S., Shi, Z., Wu, H. (2025). Effects of SiO2 with different particle sizes on the self-repairing properties of microbial mineralized cement mortar. Applied Sciences, 15, 2098. https://doi.org/10.3390/app15042098
Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2016). Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environmental Research Letters, 11, 074029. https://doi.org/10.1088/1748-9326/11/7/074029
Montgomery, J., Abu-Lebdeh, T. M., Hamoush, S. A., & Picornell, M. (2016). Effect of nano silica on the compressive strength of hardened cement paste at different stages of hydration. AJEAS, 9, 166–177. https://doi.org/10.3844/ajeassp.2016.166.177
Ni’mah, Y. L., Muhaiminah, Z. H., & Suprapto, S. (2023). Synthesis of silica nanoparticles from sugarcane bagasse by sol-gel method. NANO, 4. https://doi.org/10.35702/nano.10010
Ponomar, M., Krasnyuk, E., Butylskii, D., Nikonenko, V., Wang, Y., Jiang, C., Xu, T., Pismenskaya, N. (2022). Sessile drop method: Critical analysis and optimization for measuring the contact angle of an ion-exchange membrane surface. Membranes, 12, 765. https://doi.org/10.3390/membranes12080765
Prabha, S., Durgalakshmi, D., Rajendran, S., & Lichtfouse, E. (2021). Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery, and supercapacitors: A review. Environmental Chemistry Letters, 19, 1667–1691. https://doi.org/10.1007/s10311-020-01123-5
Ranjan, M., Kumar, S., & Sinha, S. (2024). Nanosilica’s influence on concrete hydration, microstructure, and durability: A review. Journal of Applied Engineering Sciences, 14, 322–335. https://doi.org/10.2478/jaes-2024-0040
Ren, C., Hou, L., Li, J., Lu, Z., & Niu, Y. (2020). Preparation and properties of nanosilica-doped polycarboxylate superplasticizer. Construction and Building Materials, 252, 119037. https://doi.org/10.1016/j.conbuildmat.2020.119037
Rezende, C. A., de Lima, M. A., Maziero, P., de Azevedo, E. R., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4, 54. https://doi.org/10.1186/1754-6834-4-54
Reddy Babu, G., Ramana, N. V., Naresh Kumar, T., & Visesh Kumar, K. (2019). Effect of nanosilica on properties and durability in cement. Materials Today: Proceedings, 19, 599–605. https://doi.org/10.1016/j.matpr.2019.07.739
Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015
Saha, A., Mishra, P., Biswas, G., & Bhakta, S. (2024). Greening the pathways: A comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Advances, 14, 11197–11216. https://doi.org/10.1039/d4ra01047g
Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behavior of cement mortar. International Journal of Concrete Structures and Materials, 9, 207–217. https://doi.org/10.1007/s40069-015-0099-2
Standard specification for mortar for unit masonry. Available online: https://store.astm.org/c0270-19.html (accessed on 10 September 2025).
Standard specification for mixing water used in the production of hydraulic cement concrete. Available online: https://store.astm.org/c1602_c1602m-18.html (accessed on 10 September 2025).
Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). Available online: https://store.astm.org/c0109_c0109m-21.html (accessed on 10 September 2025).
Standard test method for sieve analysis of fine and coarse aggregates. Available online: https://store.astm.org/c0136_c0136m-19.html (accessed on 10 September 2025).
Tabish, M., Zaheer, M. M., & Baqi, A. (2023). Effect of nano-silica on mechanical, microstructural, and durability properties of cement-based materials: A review. Journal of Building Engineering, 65, 105676. https://doi.org/10.1016/j.jobe.2022.105676
Tessema, B. (2023). An overview of current and prognostic trends on synthesis, characterization, and applications of biobased silica. Advances in Materials Science and Engineering. https://doi.org/10.1155/2023/4865273
Tessema, B. (2023). An overview of current and prognostic trends on synthesis, characterization, and applications of biobased silica. Advances in Materials Science and Engineering. https://doi.org/10.1155/2023/4865273
Torres-Carrasco, M., Reinosa, J. J., de la Rubia, M. A., Reyes, E., Alonso Peralta, F., Fernández, J. F. (2019). Critical aspects in the handling of reactive silica in cementitious materials: Effectiveness of rice husk ash vs nano-silica in mortar dosage. Construction and Building Materials, 223, 360–367. https://doi.org/10.1016/j.conbuildmat.2019.07.023
Tran, H.-B., Le, V.-B., & Phan, V. T.-A. (2021). Mechanical properties of high strength concrete containing nano SiO2 made from rice husk ash in Southern Vietnam. Crystals, 11, 932. https://doi.org/10.3390/cryst11080932
Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34, 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004
Venkata, N., Paluri, Y., Sudheer, K. S., & Hemanth, A. (2024). Investigating the influence of fly ash and rice husk ash on the strength and durability properties of self-compacting recycled aggregate concrete. Journal of Physics: Conference Series, 2779, 012086. https://doi.org/10.1088/1742-6596/2779/1/012086
Wang, J., Lu, X., Ma, B., & Tan, H. (2022). Cement-based materials modified by colloidal nano-silica: Impermeability characteristic and microstructure. Nanomaterials (Basel), 12, 3176. https://doi.org/10.3390/nano12183176
Yaqueen, M. N., Kuity, A., & Ahmed, M. A. (2025). Sustainable nano silica production from agricultural residues: A review of green synthesis techniques and performance in asphalt applications. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-025-00585-6
Yarra, A., Nakkeeran, G., Roy, D., & Alaneme, G. U. (2025). Evaluation of SCBA-replaced cement for carbon credits and reduction in CO2 emissions. Discovery Applied Science, 7, 114. https://doi.org/10.1007/s42452-025-06487-3
Zhang, P., Sha, D., Li, Q., Zhao, S., & Ling, Y. (2021). Effect of nano silica particles on impact resistance and durability of concrete containing coal fly ash. Nanomaterials (Basel), 11, 1296. https://doi.org/10.3390/nano11051296
Zhang, Y., Shao, J., He, Q., & Wu, J. (2021). Experimental study on the performance of concrete incorporating nano-SiO2 with different particle sizes. Journal of Nanoscience and Nanotechnology, 21, 3994–4003. https://doi.org/10.1166/jnn.2021.18225
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 .

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.













