adsorbent. F1000Research, 11, 305.
https://doi.org/10.12688/f1000research.75979.1
Du, S., Wu, J., AlShareedah, O., & Shi, X. (2019).
Nanotechnology in cement-based materials: A review of
durability, modeling, and advanced characterization.
Nanomaterials, 9, 1213.
https://doi.org/10.3390/nano9091213
Francioso, V., Lemos-Micolta, E. D., Elgaali, H. H., Moro,
C., Rojas-Manzano, M. A., & Velay-Lizancos, M.
(2024). Valorization of sugarcane bagasse ash as an
alternative SCM: Effect of particle size, temperature-
crossover effect mitigation & cost analysis.
Sustainability, 16, 9370.
https://doi.org/10.3390/su16219370
Geng, Z., Zhang, Y., Zhou, Y., Duan, J., & Yu, Z. (2025).
Effect of nano-SiO2 on the hydration, microstructure,
and mechanical performances of solid waste-based
cementitious materials. Materials, 18, 2636.
https://doi.org/10.3390/ma18112636
Habert, G., & Ouellet-Plamondon, C. (2016). Recent update
on the environmental impact of geopolymers. RILEM
Technical Letters, 1, 17–23.
https://doi.org/10.21809/rilemtechlett.2016.6
Hasan, N. M. S., Sobuz, M. H. R., Khan, M. M. H., Mim, N.
J., Meraz, M. M., Datta, S. D., Rana, M. J., Saha, A.,
Akid, A. S. M., Mehedi, M. T., et al. (2022). Integration
of rice husk ash as supplementary cementitious material
in the production of sustainable high-strength concrete.
Materials, 15, 8171.
https://doi.org/10.3390/ma15228171
Hossain, S. S., Roy, P. K., & Bae, C.-J. (2021). Utilization
of waste rice husk ash for sustainable geopolymer: A
review. Construction and Building Materials, 310,
125218.
https://doi.org/10.1016/j.conbuildmat.2021.125218
Huang, C., Nantung, T., Feng, Y., & Lu, N. (2024). Effect of
colloidal nano silica on the freeze-thaw resistance and
air void system of Portland cement concrete. Journal of
Building Engineering, 86, 108888.
https://doi.org/10.1016/j.jobe.2024.108888
Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends
and developments in green cement and concrete
technology. International Journal of Sustainable Built
Environment, 1, 194–216.
https://doi.org/10.1016/j.ijsbe.2013.05.001
Kaura, J. M., Lawan, A., Abubakar, I., & Ibrahim, A. (2014).
Effect of nanosilica on mechanical and microstructural
properties of cement mortar. Jordan Journal of Civil
Engineering, 8.
Liu, D., Kaja, A., Chen, Y., Brouwers, H. J. H., & Yu, Q.
(2022). Self-cleaning performance of photocatalytic
cement mortar: Synergistic effects of hydration and
carbonation. Cement and Concrete Research, 162,
107009.
https://doi.org/10.1016/j.cemconres.2022.107009
Liu, H., Li, Q., Su, D., Yue, G., & Wang, L. (2021). Study
on the influence of nanosilica sol on the hydration
process of different kinds of cement and mortar
properties. Materials (Basel), 14, 3653.
https://doi.org/10.3390/ma14133653
Li, X., Yang, W., Wan, S., Li, S., Shi, Z., Wu, H. (2025).
Effects of SiO2 with different particle sizes on the self-
repairing properties of microbial mineralized cement
mortar. Applied Sciences, 15, 2098.
https://doi.org/10.3390/app15042098
Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2016).
Readily implementable techniques can cut annual CO2
emissions from the production of concrete by over 20%.
Environmental Research Letters, 11, 074029.
https://doi.org/10.1088/1748-9326/11/7/074029
Montgomery, J., Abu-Lebdeh, T. M., Hamoush, S. A., &
Picornell, M. (2016). Effect of nano silica on the
compressive strength of hardened cement paste at
different stages of hydration. AJEAS, 9, 166–177.
https://doi.org/10.3844/ajeassp.2016.166.177
Ni’mah, Y. L., Muhaiminah, Z. H., & Suprapto, S. (2023).
Synthesis of silica nanoparticles from sugarcane bagasse
by sol-gel method. NANO, 4.
https://doi.org/10.35702/nano.10010
Ponomar, M., Krasnyuk, E., Butylskii, D., Nikonenko, V.,
Wang, Y., Jiang, C., Xu, T., Pismenskaya, N. (2022).
Sessile drop method: Critical analysis and optimization
for measuring the contact angle of an ion-exchange
membrane surface. Membranes, 12, 765.
https://doi.org/10.3390/membranes12080765
Prabha, S., Durgalakshmi, D., Rajendran, S., & Lichtfouse,
E. (2021). Plant-derived silica nanoparticles and
composites for biosensors, bioimaging, drug delivery,
and supercapacitors: A review. Environmental
Chemistry Letters, 19, 1667–1691.
https://doi.org/10.1007/s10311-020-01123-5
Ranjan, M., Kumar, S., & Sinha, S. (2024). Nanosilica’s
influence on concrete hydration, microstructure, and
durability: A review. Journal of Applied Engineering
Sciences, 14, 322–335. https://doi.org/10.2478/jaes-
2024-0040
Ren, C., Hou, L., Li, J., Lu, Z., & Niu, Y. (2020). Preparation
and properties of nanosilica-doped polycarboxylate
superplasticizer. Construction and Building Materials,
252, 119037.
https://doi.org/10.1016/j.conbuildmat.2020.119037
Rezende, C. A., de Lima, M. A., Maziero, P., de Azevedo,
E. R., Garcia, W., & Polikarpov, I. (2011). Chemical and
morphological characterization of sugarcane bagasse
submitted to a delignification process for enhanced