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Abstract

Cement has long been considered the essential binder of modern construction, but the price paid for this convenience is high. The
production of ordinary Portland cement is estimated to contribute close to 8% of global CO: emissions, which explains why so many
research efforts now concentrate on reducing its impact. One of the directions that has attracted interest is the use of agricultural
residues, materials that are usually discarded after harvest and that, in many cases, contain significant amounts of amorphous silica.
In the present study, corn leaves (Zea mays L.) were selected as a raw material. This residue is abundant in Ecuador, yet it rarely finds
any technical application. The leaves were first calcined at 600 °C, then washed with acid and ground until nanosilica with particle
sizes in the nanometer range was obtained. Mortars were prepared in which cement was partially replaced by 0.25%, 0.5%, and 1.0%
of this nanosilica. After testing compressive strength at 1, 3, 7, 28, and 90 days, the trend became clear: the lowest content, 0.25%,
delivered the best performance, reaching an increase of 27% at 90 days compared with the control mix. Higher contents did not lead
to further improvement, which may be related to particle agglomeration and limited dispersion. Microstructural analyses (SEM, TEM,
XRD, EDS) confirmed the presence of a denser and more homogeneous matrix and contact angle measurements suggested reduced
water uptake. These results show that nanosilica obtained from corn leaves can work as a sustainable additive for mortars, while also
providing a way to give value to an abundant agricultural residue.
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Articulo original
Nanosilice derivada de hojas de maiz como material suplementario sostenible para
morteros: sintesis, caracterizacion y rendimiento mecanico

Resumen

El cemento se ha considerado durante mucho tiempo el aglutinante esencial de la construcciéon moderna, pero el precio que se paga
por esta comodidad es alto. Se estima que la produccion de cemento Portland ordinario contribuye cerca del 8% de las emisiones
globales de CO:, lo que explica por qué tantos esfuerzos de investigacion ahora se concentran en reducir su impacto. Una de las
direcciones que ha atraido interés es el uso de residuos agricolas, materiales que generalmente se desechan después de la cosecha y
que, en muchos casos, contienen cantidades significativas de silice amorfa. En el presente estudio, se seleccionaron hojas de maiz
(Zea mays L.) como materia prima. Este residuo es abundante en Ecuador, pero rara vez encuentra alguna aplicacion técnica. Las
hojas se calcinaron primero a 600 °C, luego se lavaron con 4cido y se molieron hasta obtener nanosilice con tamafios de particula en
el rango nanométrico. Se prepararon morteros en los que el cemento se reemplazé parcialmente por 0,25%, 0,5% y 1,0% de esta
nanosilice. Tras probar la resistencia a la compresion a los 1, 3, 7, 28 y 90 dias, la tendencia se hizo evidente: el conteni do mas bajo,
0,25 %, presento6 el mejor rendimiento, alcanzando un aumento del 27 % a los 90 dias en comparacion con la mezcla de control. Los
contenidos mas altos no produjeron una mejora adicional, lo que podria estar relacionado con la aglomeracion de particulas y la
dispersion limitada. Los analisis microestructurales (SEM, TEM, XRD, EDS) confirmaron la presencia de una matriz mas densa y
homogénea, y las mediciones del dngulo de contacto sugirieron una menor absorcién de agua. Estos resultados demuestran que la
nanosilice obtenida de las hojas de maiz puede funcionar como un aditivo sostenible para morteros, a la vez que proporciona una
forma de valorizar un residuo agricola abundante.

Palabras Clave: cemento; nanosilice; hojas de maiz; residuos agricolas, resistencia a la compresion; morteros sostenibles
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1. Introduction

Portland cement is part of almost every building we see. It is
mixed into mortars for houses, poured into bridges, and
spread across pavements. People in construction like it
because it is affordable and easy to work with. Still, there is
a serious downside. Making cement produces a lot of
pollution. Current estimates suggest that the cement industry
alone is behind nearly 7% of global CO: emissions (Andrew,
2018; Scrivener et al., 2018).

The reason is simple. When limestone is burned to form
clinker, it releases CO:. At the same time, kilns must be kept
extremely hot—above 1400 °C—and that burns a lot of fuel
(Miller et al., 2016; Habert & Ouellet-Plamondon, 2016).
Taken together, these steps explain why cement is one of the
most carbon-intensive materials in modern life.

Because of this, scientists and engineers are under pressure
to find eco-efficient alternatives. The idea is not to stop using
cement completely—society depends on it—but to cut its
environmental cost (Imbabi et al., 2012; Du et al., 2019).
Some options involve replacing part of the clinker with other
materials, often called supplementary cementitious materials
(SCMs). Others test ways to recycle waste from industry or
agriculture. In recent years, nanomaterials have been added
to the list of possible solutions (AlTawaiha et al., 2023;
Reddy Babu et al., 2019).

Among them, nanosilica (SiO2) has become a favorite. Its
particles are very small, usually under 100 nm, and
amorphous in structure. They also have a very large surface
area, which makes them highly reactive (Ren et al., 2020;
Geng et al., 2025). Inside a mortar mix, nanosilica acts like
a trigger. It speeds up hydration, fills pores, and creates a
denser structure (Ranjan et al., 2024; Kaura et al., 2014). The
outcome is easy to measure mortars and concretes get
stronger and last longer. Dozens of papers have reported
these gains (Althoey et al., 2023; Venkata et al., 2024).

Some side effects are interesting too. Several studies noticed
that nanosilica changes how water interacts with mortar
surfaces, making them less absorbent (Liu et al., 2021;
Zhang et al., 2021). Others found that it helps resist chemical
attack and freeze—thaw cycles (Huang et al., 2024; Liu et al.,
2022). When combined with certain photocatalytic oxides, it
has even been linked to self-cleaning properties (Wang et al.,
2022).

There is, however, a problem. Producing nanosilica through
commercial methods is expensive. Sol-gel, flame pyrolysis,
and sodium silicate precipitation give excellent results but
consume a lot of energy and costly chemicals (Tessema,
2023; Saha et al., 2024). For use in large-scale construction,
these processes are not practical.
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That is why researchers are now turning to biogenic sources
of nanosilica. Agricultural residues are generated in huge
amounts and often contain high levels of amorphous silica.
Most of the time, this biomass is wasted or openly burned.
Transforming it into nanosilica not only reduces waste but
also creates a cheaper additive (Yaqueen et al., 2025; Prabha
etal., 2021).

Rice husk ash is the classic example. Torres-Carrasco et al.
(2019) showed that nanosilica from rice husks improved
mortar strength by around 40% at 28 days. Tran et al. (2021)
confirmed similar results and also found lower permeability.
Maheswaran et al. (2023) demonstrated improvements in
geopolymeric binders as well.

Sugarcane bagasse ash has been equally promising. Basnet
etal. (2022) reported 10-20% strength gains in concrete with
nanosilica from bagasse. Yarra et al. (2025) added that it also
reduces water absorption, improving its permeability.
Bamboo leaves are another case. Lwin et al. (2021) showed
that nanosilica obtained from bamboo can enhance both
strength and durability.

Compared to those residues, corn is less studied, even though
it is one of the most important crops in Latin America.
Ecuador alone produces more than 1.3 million tonnes each
year (FAOSTAT, 2025). Leaves, husks, and cobs pile up
after harvest, and most of them are either wasted or burned,
creating pollution. Chemical analyses show that corn leaves
can contain over 50% amorphous silica (Sulaiman et al.,
2023). Cobs, by contrast, contain much less and often carry
impurities (Dahliyanti et al., 2022).

So far, only a few studies have looked at nanosilica from
corn. Dahliyanti et al. (2022) tested cobs and found low
reactivity. Even so, research is scarce and there is no
agreement on optimal dosages or durability.

In our own work, we began with cobs. The results were
poor—little silica and a dark, impure ash. In hindsight, this
failure was useful. It matched what earlier authors had
already suggested (Sulaiman et al., 2023; Dahliyanti et al.,
2022) and pushed us to turn our attention to corn leaves. The
difference was obvious: higher yields and nanosilica of
better quality, white and uniform.

The goal of this study was simple: to synthesize nanosilica
from corn leaves and test its effect on standardized mortars.
Compressive strength was the main property we measured,
since it is central to any cementitious system. To add context,
we also examined microstructure (SEM, TEM, XRD, EDS)
and ran contact angle tests (Wang et al., 2022).

Finally, it is worth noting what this study does not cover. We
did not carry out detailed physicochemical analyses such as
FTIR, BET, or TGA (Saha et al., 2024). Others have done
that before. Our focus was more practical: to see if nanosilica
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from corn leaves could improve mortar performance. This
narrower scope gave us a clear research question. More
advanced characterization and long-term durability tests will
be needed in future work.

2. Materials and Methods
2.1 Cement, aggregates, and water

The mortars in this study were prepared with Ordinary
Portland cement, type GU, according to ASTM C150
(American Society for Testing and Materials [ASTM],
2021). This type of cement is widely available in Ecuador
and serves as a fair baseline for comparing results.

The sand came from a nearby river. It was washed to remove
dirt and organics, then dried in open air. Sieve analysis,
following ASTM C136 (ASTM, 2021), confirmed a fineness
modulus of about 2.65, which falls within the acceptable
range for standardized mortars. The mixing water was
drinking water, tested to ensure it complied with ASTM
C1602 (ASTM, 2021). This way, we avoided unwanted
reactions that might come from salts or impurities.

2.2. Collection and pretreatment of corn residues

Corn is abundant in the inter-Andean valleys of Ecuador. For
this work, we collected both leaves and cobs after harvest.
Prior studies had already hinted that the silica content varies
depending on which part of the plant is used (Sulaiman et al.,
2023).

e Once collected, the residues went through three
simple steps:

Washing with tap water to remove soil and dust.
Drying in an oven at 105 °C for 24 hours.

e Grinding in a small mill, reducing particle size to
less than 5 mm.

e In the early stage of the project, we tried cobs as the
raw material. The outcome was poor: yields below
0.3% and a dark ash with visible carbon. That
failure turned out to be useful, though—it directed
our efforts toward corn leaves, which promised
better results.

2.3. Synthesis of nanosilica

The method we used was based on approaches already tested
with rice husks and sugarcane bagasse (Prabha et al., 2021).

It was a thermo-chemical route with five main stages.
Calcination: dried corn leaves were placed in a muffle
furnace at 700, 800, and 900 °C for 4 hours. Quercia and
Brouwers (2020) had pointed out that below 600 °C, carbon
residue remains, while above 950 °C, crystalline phases like
cristobalite may appear, reducing reactivity.
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Acid treatment: the ash was washed with hydrochloric acid
(37%) for 3 hours at room temperature. This step removed
metals like Ca, Fe, and Mg, which could interfere with
purity.

Alkaline digestion: the treated ash was dissolved in sodium
hydroxide solution (3M) at 110 °C for 3 hours, producing
sodium silicate. This process mirrors methods used
successfully with rice husk ash and sugarcane bagasse
(Prabha et al., 2021).

Neutralization and precipitation: the sodium silicate
solution was titrated with hydrochloric acid until reaching
neutral pH. A white gel formed during this stage.

Drying: the gel was repeatedly washed with distilled water,
filtered, and dried at 110 °C for 24 hours, producing a fine
nanosilica powder.

The yields were clear: 1.7% in the laboratory muffle and up
to 4.2% in a semi-industrial furnace. These values were in
line with results from rice husk nanosilica and bagasse
nanosilica (Yaqueen et al., 2025; Basnet et al., 2022).

2.4. Characterization of nanosilica

We did not attempt a full physicochemical characterization.
Instead, we focused on basic imaging and diffraction tests to
confirm that the product was indeed amorphous nanosilica.

TEM (transmission electron microscopy) showed spherical
particles between 20—60 nm, with some clustering.

SEM (scanning electron microscopy) revealed agglomerates
of fine particles, consistent with what others have reported
about the high surface energy of nanosilica (Liu et al., 2021).
XRD (X-ray diffraction) patterns displayed the typical
amorphous halo at 20-30° 28, along with reduced portlandite
peaks in mortars with nanosilica.

EDS (energy-dispersive spectroscopy) confirmed the
presence of mainly Si and O (>95%), plus traces of Na, K,
and Al

More advanced techniques such as FTIR, BET, and TGA
could have provided additional insights (Saha et al., 2024).
But since our aim was practical application in mortars, we
kept the characterization limited.

2.5. Mortar mix design
The mixes followed ASTM C270 [49]. The cement-to-sand

ratio was 1:2.75 by weight, with a water-to-cement ratio of
0.64. Four series of mortars were prepared (Table 1):
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Table 1: Quantity of materials and number of specimens per experimental group

No. Description Cement (g) Sand (g) Water (g) Nanosilica (g) No. of Specimens
1 Control mortar (MP) 740.00 2035 473.6 - 32
2 Mortar + 0.25% NS 738.15 2035 473.6 1.85 12
3 Mortar + 0.50% NS 736.30 2035 473.6 3.70 12
4 Mortar + 0.75% NS 734.45 2035 473.6 5.55 12
5 Mortar + 1.00% NS 732.60 2035 473.6 7.40 12

Nanosilica was first dispersed in the mixing water before
being added, a method shown to reduce clustering. Mixing
was performed in a vertical-shaft mixer following ASTM
C305 (ASTM, 2021). Mortar cubes of 50 mm were cast
according to ASTM C109 (ASTM, 2021) and cured in water
at 23 £+ 2 °C until testing ages (1, 3, 7, 28, and 90 days).

2.6. Mechanical and functional tests

Compressive strength was measured at the specified ages
using a hydraulic testing machine, following ASTM C109
(ASTM, 2021). Three cubes per mix were tested, and the
mean value with standard deviation was reported.

Contact angle measurements were made with the sessile drop
method. Tiny drops of distilled water were placed on
polished cube surfaces, and the angle was recorded after 5
seconds. Angles above 90° were taken as preliminary
evidence of hydrophobic behavior (Wang et al., 2022).

2.7. Statistical analysis

Data were analyzed using one-way ANOVA. Whenever
significant differences were found (p < 0.05), Tukey’s post
hoc test was applied to identify which mixes differed.
Similar approaches have been recommended in nanosilica
research (Yaqueen et al., 2025).

3. Results
3.1. Yield of nanosilica from corn residues

The first step was to check whether cobs or leaves were more
suitable for producing nanosilica. The figure 1 highlights the
sharp contrast in total silica content obtained from two maize
by-products. Corn husk reached only 7.8%, while corn
leaves yielded a markedly higher value of 70.4%. This
difference clearly demonstrates the superior potential of
leaves as a raw material for nanosilica production, compared
to the limited contribution of husk.

The difference was obvious from the start. When we
processed cobs, the outcome was poor: yields below 0.3% of
the dry weight, along with a dark, carbon-rich ash. Leaves,

on the other hand, told a different story. In the laboratory
muffle furnace, yields reached around 1.7%. In the semi-
industrial furnace, we saw even higher values, close to 4.2%.
The product was a white, homogeneous powder, visually like
nanosilica obtained from rice husks and sugarcane bagasse
(Tessema, 2023; Prabha et al., 2021). Figure 2 illustrates this
contrast: cobs generated little and impure silica, while leaves
consistently produced more and cleaner nanosilica.

Gravimetric Method-TotalSilica

B Totalsilicacornhusk M Total silica corn leaf

TOTAL SILICA

_ o

Figure 1: Silicon dioxide content.

Figure 2: Nanosilica produced from corn cob.

In practical terms, these findings confirmed that corn leaves
are the better raw material. The negative result with cobs was
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not wasted effort—it provided a baseline and reinforced the
decision to focus exclusively on leaves.

3.2. Microstructural features of the nanosilica

Transmission electron microscopy (TEM) gave us the first
clue about particle size. Figure 3a shows that most particles
were spherical, between 20 and 60 nm. Some clustering was
visible, which is common in nanosilica due to its high surface
energy. These values align with what Larkunthod et al.
(2022) reported for rice husk nanosilica and Gupta et al.
(2021) found with bamboo nanosilica.

Scanning electron microscopy (SEM) (Figure 3b)
confirmed the tendency of particles to form agglomerates.
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This behavior has been described in other studies as well
(Sulaiman et al., 2023; Zhang et al., 2021).

X-ray diffraction (XRD) patterns (Figure 3c¢) displayed the
typical amorphous halo between 20° and 30° 260. More
importantly, mortars containing nanosilica showed a
reduction in portlandite peaks, suggesting that the pozzolanic
reaction was consuming Ca(OH).. Similar evidence was
presented in studies on nanosilica from bagasse (Basnet et
al., 2022) and rice husks (Ren et al., 2020).

Energy-dispersive  spectroscopy (EDS) (Figure 3d)
confirmed that the nanosilica consisted mainly of Si and O
(over 95%), with traces of sodium, potassium, and
aluminum. These results fit well with prior reports on silica-
rich agricultural ashes (Prabha et al., 2021).

SEMHYV 08 W
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Figure 3: Microstructural characterization nanosilica.

3.3. Compressive strength performance

At 28 days, the figure tells a clear story. The control mortar
(MP) behaved just as expected, reaching around 25-26
MPa—nothing surprising there. But the moment a tiny dose
of 0.25% nanosilica was introduced, the curve lifted
noticeably, climbing close to 29 MPa. It was a modest

change in proportion, yet it produced a striking
improvement. On the other hand, when the dosage was
pushed further—to 0.50%, 0.75%, or even 1.0%—the results
lost momentum (Figure 4). Strength values flattened,
circling back to the control level, and in some cases even
slipped slightly. The figure reminds us that with nanosilica,
more is not always better: its real power lies in small, well-
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balanced additions that unlock its reactivity. ANOVA results
indicated significant differences (p < 0.05), and Tukey’s test
showed that M1 was distinct from all other groups (Table 2).

The lesson is clear: a small dose, 0.25%, made a big
difference. Larger amounts did not help and sometimes hurt.
This reflects what Montgomery et al. (2016) reported:
nanosilica works best in small, well-dispersed doses.

https://doi.org/10.56124/finibus.v9i17.007
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The compressive strength tests were central to this work.
Figure 5 presents the results across curing ages of 1, 3, 7,
28, and 90 days.

The control mortar (MO0) reached about 31 MPa at 90 days,
which is typical for standardized mortars (ASTM, 2021).
The mortar with 0.25% nanosilica (M1) stood out. Its
strength grew steadily and reached almost 40 MPa at 90
days—roughly 52% higher than the control.

Compressive strength variability of mortars with nano SiO; at 28 days

W P Bl M+0.25 % nano SI02 [ M+0.50 % nano $102 [ M+0.75 % nano SI02 [l M+1.0 % nano S102

28-0 -

25.0

strength MPa

24.0

23.0

21.0

20.0

Figure 4: Compressive strength with the different nanosilica combinations

Compressive Strength at Different Ages

m Control Mortar

45.0

40.0

350

30.0

250

20.0

15.0

COMPRESSIVE STRENGTH (MPA}

100

85 92
- -
1 3

m Compressive Strength +0.25% SiO; (maize)

39.9

7 28 90

CURING DAYS

Figure 5: Compressive strength- curing time curve.
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Table 2: Table. Multiple comparisons between nanosilica dosages and the control mortar at 28 days (ANOVA + Tukey HSD).

Comparison with Control

0%) Mean Difference (MPa) p-value Significant (p<0.05)
()

0% vs 0.25% -2.5 0.027 Yes

0% vs 0.50% 0.2 0.998 No

0% vs 0.75% 1.67 0.361 No

0% vs 1.0% -0.37 0.981 No

3.4. Surface behavior: contact angle

The control mortar had an angle of about 25°, typical for
hydrophilic surfaces. With 0.25% nanosilica, the angle rose
to around 70°, suggesting a modest reduction in water
absorption. At 1.0%, the angle exceeded 101°, crossing into
hydrophobic territory.

This shift is promising. It matches observations by Ren et al.
(2020), who saw nanosilica increase water repellency in
mortars. But it is also important to be cautious. As Cheng et
al. (2024) noted, contact angle is only a preliminary
indicator. Tests like capillary absorption or sorptivity would
be needed to confirm the hydrophobic effect. For now, these
results show a tendency: nanosilica appears to make mortars
less wettable, especially at higher contents (Figure 6)..

(a) MP

(¢) 1.0 % nano SiO:2

Figure 6: Contact angles with different nanosilica additions.

3.5. Mortar microstructure

The SEM images of mortars (Figure 7) told the story in
visual form. In the control sample, we observed open,
interconnected pores, which explain its lower strength and
higher permeability.

With 0.25% nanosilica, the matrix looked denser and more
compact. Voids were reduced, and hydration products
appeared to be better integrated.

In the 1.0% mix, clusters of nanosilica were visible. These
clusters disrupted the matrix, acting as weak points and
explaining why the strength did not increase further.

These observations match what Li et al. (2021) reported: too
much nanosilica leads to agglomeration, which offsets its
potential benefits.



https://publicacionescd.uleam.edu.ec/index.php/finibus
https://creativecommons.org/licenses/by-nc-sa/4.0/

Vol.9, Num.17 (jan-jun 2026) ISSN: 2737-6451
Alvansazyazdi et al. (2026) https://doi.org/10.56124/finibus.v9i17.007

(a) TEM
‘ | J e u'n-ﬁ" cl.
M Lol S .
\\\_.»-‘v\ulm" L u“-'vwhu\Jwv'xww\wW“"‘“ el : ‘ ” l .
(c)XRD (d)EDS
Figure 7: Microstructural characterization mortars.
3.6. Key findings Statistical analysis reinforced this trend. ANOVA confirmed
significant differences (p < 0.05), and Tukey’s test showed
From all the data collected, three main points emerge: that the 0.25% mix stood apart from the others. Higher
e Leaves vs. cobs: corn leaves clearly outperformed dosages, however, did not provide the same benefit. At
cobs as a source of nanosilica, both in yield and in 0.50%, 0.75%, and 1.0%, strength values stayed close to the
purity. control or even dropped a little. This pattern has been noted
e Optimal dosage: 0.25% nanosilica was the sweet before: nanosilica works best in small, well-dispersed
spot. It boosted compressive strength significantly, amounts. Beyond that point, clustering starts to dominate and
while higher dosages offered no added benefit. the expected improvement simply vanishes (Li et al., 2021).
e Functional effects: contact angle and microstructure
suggest nanosilica may also improve durability, The microstructural observations help make sense of this.
though further tests are required. SEM images of the control revealed open, connected pores.
With 0.25%, the mortar looked denser, hydration products
4. Discussion filling gaps more thoroughly. At 1.0%, the picture changed:
clusters appeared, breaking the continuity of the matrix.
The strength tests gave a clear message. The control mortar XRD data supported this view, with a reduction in
developed as expected, reaching roughly 31 MPa at 90 days. portlandite peaks that indicates consumption of Ca(OH).
Nothing surprising here, which is consistent with typical through the pozzolanic reaction. EDS confirmed the high Si—
standardized mortars (ASTM, 2021). But when a very small O content, very much in line with reports from other
amount of nanosilica from corn leaves was added—only agroresidues (Prabha et al., 2021). Together, the evidence is
0.25%—the response was different. The strength rose close coherent: nanosilica strengthens the microstructure at low
to 40 MPa, more than 50% higher than the control. For such levels but loses efficiency when overdosed.
a minor change in composition, the outcome feels
disproportionate. It suggests that the leaves carry a strong Surface behavior added another dimension. The contact
potential as a raw source of silica, perhaps underestimated angle of the control was around 25°, which means a
until now. hydrophilic surface. With 0.25% nanosilica, it increased to

70°, and with 1.0% it went beyond 100°. On its own, this is
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not enough to claim hydrophobicity—surface roughness
matters too, but the tendency is interesting. If confirmed by
absorption or sorptivity tests, it could mean improved
durability in humid or aggressive conditions (Ren et al.,
2020). Beyond the laboratory, there is also the practical
view: in Ecuador and across Latin America, maize is
produced in large volumes, and leaves are mostly discarded.
Turning this residue into nanosilica creates both a technical
advantage and an environmental benefit, linking local
agriculture with sustainable construction.

5. Conclusion

The study began with a simple idea: use corn leaves, a
common agricultural residue, to produce nanosilica and test
it in mortars. The results were encouraging.

The synthesis showed clear differences among residues.
Leaves processed in a semi-industrial furnace gave yields up
to 4.2%. Cobs, by contrast, stayed below 0.3% and produced
impure ash. This confirmed that not all corn waste works the
same way; leaves are the most suitable precursor.

When nanosilica was added to mortars, the effect was
evident. With only 0.25% by cement weight, compressive
strength rose by more than 50% at 90 days compared with
the control. This trend was consistent at different curing
ages. Larger dosages (0.50—1.0%) did not bring further gains
and sometimes reduced strength, likely due to particle ag-
glomeration.

Surface behavior also shifted. The contact angle increased
from 58° in the reference mortar to more than 100° with
1.0% nanosilica. This points to a move toward
hydrophobicity, which may help resist water ingress.

SEM images supported these findings. Low dosages
produced a denser, less porous matrix, while high contents
created weak areas from clustering.

Beyond the lab, the approach offers environmental benefits.
It reuses agricultural waste, avoids open burning, and
provides a sustainable additive. At the same time, partial
cement replacement can reduce CO- emissions.

In short, nanosilica from corn leaves proved to be a low-
dosage, high-impact material. Future research should focus
on structural concrete, durability, and life cycle as-
assessments to confirm its practical potential.
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