estudiados y adaptar las herramientas disponibles a
diferentes escenarios educativos, lo que permitirá un
abordaje más inclusivo y aplicable.
Referencias
Acevedo, F. (2023). The deficient factual basis of the main
explanatory models of dropout in higher education.
Journal of Education and Learning, 17(2), 241–248.
https://doi.org/10.11591/edulearn.v17i2.20756
Asenjo, E., Santos, L., Puican, L., Ventura, F., Huanca, L.,
Valladolid, A., & Hinojosa, C. (2024). Fostering equity
in rural education: a literature review on student dropout
and retention strategies. Revista de Gestao Social e
Ambiental, 18(1).
https://doi.org/10.24857/RGSA.V18N1-083
Barragán Moreno, S. P., & González Támara, L. (2017).
Approach to student dropouts from the perspective of
social and academic integration. Revista de La
Educacion Superior, 46(183), 63–86.
https://doi.org/10.1016/j.resu.2017.05.004
Branson, N., & Whitelaw, E. (2024). South African student
retention during 2020: Evidence from system-wide
higher education institutional data. South African
Journal of Economics, 92(1), 9–30.
https://doi.org/10.1111/saje.12361
Cădariu, I.-E., & Rad, D. (2023). Predictors of Romanian
Psychology Students’ Intention to Successfully
Complete Their Courses—A Process-Based Psychology
Theory Approach. Behavioral Sciences, 13(7).
https://doi.org/10.3390/bs13070549
Castillo, P., Morales, T., & Miranda, C. (2019). Evaluation
of a psycho-social support program about concepts of
persistence and university retention. Revista Brasileira
de Educacao, 24, 1–24. https://doi.org/10.1590/S1413-
24782019240058
Cocoradă, E., Curtu, A. L., Năstasă, L. E., & Vorovencii, I.
(2021). Dropout intention, motivation and socio-
demographics of forestry students in Romania. Forests,
12(5). https://doi.org/10.3390/f12050618
Flores, V., Heras, S., & Julián, V. (2022). A New
Methodological Framework for Project Design to
Analyse and Prevent Students from Dropping Out of
Higher Education. Electronics (Switzerland), 11(18).
https://doi.org/10.3390/electronics11182902
Gallegos, J. A., Campos, N. A., Canales, K. A., & González,
E. N. (2018). Determining factors of university dropout.
A case of the faculty of economy and administration
sciences of the Catholic University of the Most Holy
Conception (Chile). Formacion Universitaria, 11(3), 11–
18. https://doi.org/10.4067/S0718-50062018000300011
García Aretio, L. (2019). The problem with distance
education dropout rate. Answers from the Mediated
Educational Dialogue. RIED-Revista Iberoamericana de
Educacion a Distancia, 22(1), 245–270.
https://doi.org/10.5944/ried.22.1.22433
González-Campos, J. A., Carvajal-Muquillaza, C. M., &
Aspeé-Chacón, J. E. (2020). Modelación de la deserción
universitaria mediante cadenas de Markov. Uniciencia,
34(1), 129–146.
https://www.redalyc.org/articulo.oa?id=475962995008
Goran, R., Jovanovic, L., Bacanin, N., Stankovic, M. S.,
Simic, V., Antonijevic, M., & Zivkovic, M. (2024).
Identifying and Understanding Student Dropouts Using
Metaheuristic Optimized Classifiers and Explainable
Artificial Intelligence Techniques. IEEE Access, 12,
122377–122400.
https://doi.org/10.1109/ACCESS.2024.3446653
Guanin-Fajardo, J. H., Guaña-Moya, J., & Casillas, J.
(2024). Predicting Academic Success of College
Students Using Machine Learning Techniques. Data,
9(4). https://doi.org/10.3390/data9040060
Hinojosa, M., Derpich, I., Alfaro, M., Ruete, D., Caroca, A.,
& Gatica, G. (2022). Procedimento de agrupamento de
alunos de acordo com o risco de evasão para melhorar a
gestão estudantil no ensino superior. Texto Livre, 15,
e37275. https://doi.org/10.35699/1983-
3652.2022.37275
Huerta-Manzanilla, E. L., Ohland, M. W., & Peniche-Vera,
R. D. R. (2021). Co-enrollment density predicts
engineering students’ persistence and graduation:
College networks and logistic regression analysis.
Studies in Educational Evaluation, 70.
https://doi.org/10.1016/j.stueduc.2021.101025
Kitchenham, B., & Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering. 2.
Lázaro, N., Callejas, Z., & Griol, D. (2020). Factors that
affect student desertion in careers in Computer
Engineering profile. Revista Fuentes, 22(1), 105–126.
https://doi.org/10.12795/revistafuentes.2020.v22.i1.09
Marcq, K., Donayre, E. J. C., & Braeken, J. (2024). The role
of item format in the PISA 2018 mathematics literacy
assessment: A cross-country study. Studies in
Educational Evaluation, 83, 101401.
https://doi.org/https://doi.org/10.1016/j.stueduc.2024.1
01401
Matz, S. C., Bukow, C. S., Peters, H., Deacons, C., & Stachl,
C. (2023). Using machine learning to predict student
retention from socio-demographic characteristics and
app-based engagement metrics. Scientific Reports,
13(1). https://doi.org/10.1038/s41598-023-32484-w
Miranda, M. A., & Guzmán, J. (2017). Análisis de la
deserción de estudiantes universitarios usando técnicas
de minería de datos. Formacion Universitaria, 10(3), 61–
68. https://doi.org/10.4067/S0718-50062017000300007