estudiados  y  adaptar  las  herramientas  disponibles  a 
diferentes  escenarios  educativos,  lo  que  permitirá  un 
abordaje más inclusivo y aplicable.  
 
Referencias  
 
Acevedo, F. (2023). The deficient factual basis of the main 
explanatory  models  of  dropout  in  higher  education. 
Journal  of  Education  and  Learning,  17(2),  241–248. 
https://doi.org/10.11591/edulearn.v17i2.20756  
Asenjo, E., Santos, L., Puican, L., Ventura, F., Huanca, L., 
Valladolid, A., & Hinojosa, C. (2024). Fostering equity 
in rural education: a literature review on student dropout 
and  retention  strategies.  Revista  de  Gestao  Social  e 
Ambiental,  18(1). 
https://doi.org/10.24857/RGSA.V18N1-083  
Barragán  Moreno,  S.  P.,  &  González  Támara,  L.  (2017). 
Approach to student dropouts from the perspective of 
social  and  academic  integration.  Revista  de  La 
Educacion  Superior,  46(183),  63–86. 
https://doi.org/10.1016/j.resu.2017.05.004  
Branson, N., & Whitelaw, E. (2024). South African student 
retention  during  2020:  Evidence  from  system-wide 
higher  education  institutional  data.  South  African 
Journal  of  Economics,  92(1),  9–30. 
https://doi.org/10.1111/saje.12361  
Cădariu, I.-E., & Rad, D. (2023). Predictors of Romanian 
Psychology  Students’  Intention  to  Successfully 
Complete Their Courses—A Process-Based Psychology 
Theory  Approach.  Behavioral  Sciences,  13(7). 
https://doi.org/10.3390/bs13070549  
Castillo, P., Morales, T., & Miranda, C. (2019). Evaluation 
of a psycho-social support program about concepts of 
persistence and university retention. Revista Brasileira 
de Educacao, 24, 1–24. https://doi.org/10.1590/S1413-
24782019240058  
Cocoradă, E., Curtu, A. L., Năstasă, L. E., & Vorovencii, I. 
(2021).  Dropout  intention,  motivation  and  socio-
demographics of forestry students in Romania. Forests, 
12(5). https://doi.org/10.3390/f12050618  
Flores,  V.,  Heras,  S.,  &  Julián,  V.  (2022).  A  New 
Methodological  Framework  for  Project  Design  to 
Analyse  and Prevent  Students  from  Dropping  Out  of 
Higher  Education.  Electronics  (Switzerland),  11(18). 
https://doi.org/10.3390/electronics11182902  
Gallegos, J. A., Campos, N. A., Canales, K. A., & González, 
E. N. (2018). Determining factors of university dropout. 
A  case of  the  faculty  of  economy and administration 
sciences of the Catholic University of the Most  Holy 
Conception (Chile). Formacion Universitaria, 11(3), 11–
18. https://doi.org/10.4067/S0718-50062018000300011  
García  Aretio,  L.  (2019).  The  problem  with  distance 
education  dropout  rate.  Answers  from  the  Mediated 
Educational Dialogue. RIED-Revista Iberoamericana de 
Educacion  a  Distancia,  22(1),  245–270. 
https://doi.org/10.5944/ried.22.1.22433  
González-Campos,  J.  A.,  Carvajal-Muquillaza,  C.  M.,  & 
Aspeé-Chacón, J. E. (2020). Modelación de la deserción 
universitaria mediante cadenas de Markov. Uniciencia, 
34(1),  129–146. 
https://www.redalyc.org/articulo.oa?id=475962995008    
Goran,  R.,  Jovanovic,  L.,  Bacanin,  N.,  Stankovic,  M.  S., 
Simic,  V.,  Antonijevic,  M.,  &  Zivkovic,  M.  (2024). 
Identifying and Understanding Student Dropouts Using 
Metaheuristic  Optimized  Classifiers  and  Explainable 
Artificial  Intelligence  Techniques.  IEEE  Access,  12, 
122377–122400. 
https://doi.org/10.1109/ACCESS.2024.3446653  
Guanin-Fajardo,  J.  H.,  Guaña-Moya,  J.,  &  Casillas,  J. 
(2024).  Predicting  Academic  Success  of  College 
Students  Using  Machine  Learning  Techniques.  Data, 
9(4). https://doi.org/10.3390/data9040060  
Hinojosa, M., Derpich, I., Alfaro, M., Ruete, D., Caroca, A., 
& Gatica, G. (2022). Procedimento de agrupamento de 
alunos de acordo com o risco de evasão para melhorar a 
gestão estudantil no ensino superior. Texto Livre, 15, 
e37275.  https://doi.org/10.35699/1983-
3652.2022.37275  
Huerta-Manzanilla, E. L., Ohland, M. W., & Peniche-Vera, 
R.  D.  R.  (2021).  Co-enrollment  density  predicts 
engineering  students’  persistence  and  graduation: 
College  networks  and  logistic  regression  analysis. 
Studies  in  Educational  Evaluation,  70. 
https://doi.org/10.1016/j.stueduc.2021.101025  
Kitchenham,  B.,  &  Charters,  S.  (2007).  Guidelines  for 
performing Systematic Literature Reviews in Software 
Engineering. 2. 
Lázaro,  N.,  Callejas,  Z.,  & Griol,  D.  (2020).  Factors  that 
affect  student  desertion  in  careers  in  Computer 
Engineering profile.  Revista Fuentes, 22(1), 105–126. 
https://doi.org/10.12795/revistafuentes.2020.v22.i1.09  
Marcq, K., Donayre, E. J. C., & Braeken, J. (2024). The role 
of item format in the PISA 2018 mathematics literacy 
assessment:  A  cross-country  study.  Studies  in 
Educational  Evaluation,  83,  101401. 
https://doi.org/https://doi.org/10.1016/j.stueduc.2024.1
01401  
Matz, S. C., Bukow, C. S., Peters, H., Deacons, C., & Stachl, 
C.  (2023).  Using  machine learning  to  predict  student 
retention  from  socio-demographic  characteristics  and 
app-based  engagement  metrics.  Scientific  Reports, 
13(1). https://doi.org/10.1038/s41598-023-32484-w  
Miranda,  M.  A.,  &  Guzmán,  J.  (2017).  Análisis  de  la 
deserción de estudiantes universitarios usando técnicas 
de minería de datos. Formacion Universitaria, 10(3), 61–
68. https://doi.org/10.4067/S0718-50062017000300007