

DOI: https://doi.org/10.56124/allpa.v8i16.0133

Caracterización fenotípica de gallinas criollas del cantón Bolívar, Manabí, Ecuador

Phenotypic Characterization of Native Hens from the Bolivar Canton, Manabí, Ecuador

Robalino-Briones César Anibal ¹; Rincón-Acosta Fernando ²

Resumen

El estudio tuvo como objetivo caracterizar fenotípicamente las gallinas criollas del cantón Bolívar, provincia de Manabí, Ecuador, mediante análisis descriptivos, correlacionales y multivariados. Se evaluaron 171 aves (141 hembras y 30 machos) mediante observación directa de variables morfológicas y cromáticas. Los resultados mostraron un predominio del plumaje rojo (67 %), tarso y pico de color amarillo (>95 %), piel amarilla (79 % en hembras; 63 % en machos) y cresta simple (72 % en hembras; 40 % en machos), rasgos típicos de poblaciones adaptadas al trópico. El análisis de correlación de Spearman evidenció una asociación positiva fuerte entre edad y peso corporal (p=0,764), mientras que el Análisis de Componentes Principales (PCA) explicó el 37,43 % de la variabilidad total, destacando los rasgos de edad, peso y coloración. El análisis de conglomerados identificó tres grupos fenotípicos diferenciados, asociados a gradientes de madurez corporal y diversidad cromática. Se concluye que la población presenta diversidad fenotípica moderada y estabilidad genética adaptativa, lo que la convierte en un recurso zoogenético de valor estratégico para programas de conservación, selección y mejoramiento genético sostenible orientados al fortalecimiento de la avicultura rural manabita.

Palabras clave: gallinas criollas, caracterización fenotípica, conservación genética, diversidad biológica, avicultura.

Abstract

The study aimed to phenotypically characterize native hens from the Bolívar canton, Manabí province, Ecuador, using descriptive, correlational, and multivariate analyses. One hundred and seventy-one birds (141 females and 30 males) were evaluated through direct observation of morphological and chromatic variables. The results showed a predominance of red plumage (67%), yellow tarsus and beak (>95%), yellow skin (79% in females; 63% in males), and single crest (72% in females; 40% in males), typical traits of populations adapted to the tropics. Spearman's correlation analysis showed a strong positive association between age and body weight (p=0.764), while Principal Component Analysis (PCA) explained 37.43% of the total variability, highlighting the traits of age, weight, and coloration. Cluster analysis identified three distinct phenotypic groups associated with gradients in body maturity and color diversity. It is concluded that the population exhibits moderate phenotypic diversity and adaptive genetic stability, making it a strategically valuable animal genetic resource for conservation, selection, and sustainable genetic improvement programs aimed at strengthening rural poultry farming in Manabí.

Keywords: native hens, phenotypic characterization, genetic conservation, biological diversity, poultry farming.

¹ Escuela Superior Politécnica Agropecuaria de Manabí Manual Félix López. Calceta, Ecuador. Correo: robalinocesar@gmail.com. ORCID ID: https://orcid.org/0009-0002-3895-2081

² Escuela Superior Politécnica Agropecuaria de Manabí Manual Félix López. Calceta, Ecuador. Correo: fjrincon@espam.edu.ec. ORCID ID: https://orcid.org/0000-0001-5670-1488

1. Introducción

La erosión genética de las gallinas criollas constituye una preocupación creciente en el ámbito de la biodiversidad agropecuaria, directamente vinculada con la pérdida progresiva de la pureza de sus líneas genéticas. Esta disminución en la variabilidad fenotípica afecta a poblaciones que históricamente se han caracterizado por su adaptabilidad, rusticidad y resistencia a enfermedades, comprometiendo su valor reservorios genéticos. La dilución de los rasgos distintivos pone en riesgo no solo la supervivencia de estos recursos zoogenéticos, sino también la seguridad alimentaria rural y la diversidad biológica local.

La gallina doméstica (Gallus gallus domesticus) tiene sus raíces en el gallo bankiva (Gallus bankiva), originario del sudeste asiático. La domesticación de esta especie, ocurrida hace miles de años, y su posterior expansión global mediante rutas comerciales y migraciones humanas, dieron origen a múltiples variedades locales. En el continente americano, su introducción se produjo durante la colonización española, cuando las aves europeas se cruzaron con las especies nativas, dando

lugar a las gallinas criollas, adaptadas a las condiciones ambientales y culturales de cada territorio (Valencia et al., 1990; Guelber, 2005).

En la actualidad, las gallinas criollas desempeñan un papel esencial en la alimentaria seguridad de las comunidades rurales de América Latina, África y Asia, al proveer proteínas de alto valor biológico y contribuir a la economía familiar. Su capacidad de adaptación a sistemas de bajos insumos, resistencia a enfermedades y sus aptitudes reproductivas y maternas las convierten en un recurso estratégico para el desarrollo sostenible (Cuca et al., 2018; Soglia et al., 2021; Pérez et al., 2023). No obstante, la creciente tecnificación de la avicultura moderna y la expansión de razas comerciales han provocado una pérdida progresiva de poblaciones, ha como se documentado en diversos países europeos, lo que resalta la urgencia de implementar programas de conservación y valorización genética.

En Ecuador, distintos estudios han identificado una notable diversidad fenotípica en las gallinas criollas, con amplias variaciones en color de plumaje, piel, pico y forma de cresta, así como

diferencias en la productividad y calidad de los huevos (Toalombo et al., 2019; Oñate et al., 2020; Luis et al., 2021; Becerril et al., 2024). Estas variaciones reflejan la influencia combinada de factores genéticos, ambientales culturales, así como la ausencia de programas sistemáticos de selección o mejora, lo que plantea el desafío de conservar esta riqueza genética antes de irreversiblemente que se vea erosionada.

Las gallinas criollas de la provincia de Manabí, particularmente en el cantón Bolívar, forman parte del patrimonio agropecuario tradicional, asociado a sistemas de producción familiares y prácticas empíricas heredadas. caracterización fenotípica resulta fundamental para identificar variabilidad existente, definir patrones morfológicos predominantes reconocer posibles subpoblaciones o ecotipos locales, lo cual constituye la base para estrategias de conservación y mejoramiento genético sostenible.

En este contexto, la presente investigación tiene como objetivo general caracterizar fenotípicamente las gallinas criollas del cantón Bolívar, provincia de Manabí (Ecuador),

mediante análisis descriptivos, correlacionales y multivariados (PCA y clúster), con el fin de determinar los principales rasgos morfológicos y cromáticos que definen su diversidad y estructura poblacional.

2. Metodología (materiales y métodos)

La investigación se llevó a cabo en el cantón Bolívar, ubicado en la provincia de Manabí, Ecuador, con coordenadas Este 592892.00 y Norte 9906430.00, a una altitud de 17 m.s.n.m. El clima de la zona se caracteriza por una precipitación anual promedio de 994.9 mm, una temperatura media anual de 25.9°C. Además, presenta una heliofanía anual del 82.40% y una evaporación anual de 1334.4 mm (INAMHI, 2025). Estas condiciones climáticas son relevantes para comprender el contexto en el que se desarrolla la población de gallinas criollas.

La investigación adopta un enfoque cuantitativo, basado en la medición y análisis estadístico de variables morfológicas, cromáticas y biométricas de gallinas criollas. Este enfoque permite describir, comparar y establecer relaciones objetivas entre los distintos rasgos fenotípicos observados. El

enfoque cuantitativo es el más apropiado porque la caracterización fenotípica requiere cuantificar rasgos observables y comparables (edad, peso, color, morfología, etc.) mediante escalas numéricas o codificaciones.

El nivel de investigación es descriptivo—correlacional. El carácter descriptivo se debe a que el estudio busca detallar las características fenotípicas de las gallinas criollas del cantón Bolívar, identificando la frecuencia y distribución de cada rasgo. A su vez, el nivel es correlacional porque se establecieron asociaciones entre variables morfológicas y cromáticas. Esta combinación de niveles permitió comprender la estructura y variabilidad interna de la población estudiada.

La investigación es de campo, no experimental y transversal. De campo, porque la información fue obtenida directamente en las unidades productivas, mediante la observación y registro in situ de los rasgos fenotípicos de cada ave. No experimental, ya que no se manipularon las variables; el estudio se limitó a observar y registrar las características naturales de los animales intervenir desarrollo. en su Transversal, porque la información se recolectó en un solo periodo de tiempo, describiendo la condición fenotípica de la población en un momento determinado, sin seguimiento longitudinal.

La población estuvo conformada por gallinas criollas adultas presentes en unidades familiares de producción, mantenidas en sistemas de producción de traspatio o semi-intensivo, del cantón Bolívar, provincia de Manabí. La muestra se integró por 171 individuos (141 hembras y 30 machos) seleccionados de forma intencional y representativa según disponibilidad y cooperación de los productores. Se consideró como criterio de inclusión a las aves nacidas v criadas localmente (con más de 12 semanas), con características fenotípicas propias de la raza criolla ecuatoriana, y se excluyeron las aves de cruces comerciales evidentes.

La recolección de datos se realizó mediante observación directa de las variables fenotípicas en cada gallina usando una ficha de registro por cada productor, donde se anotaron las variables. Las variables cuantificadas incluyeron: edad (semanas), peso corporal (g), color de plumaje, color de piel, color de tarsos, color de pico, color

de orejuelas, color de cáscara y forma de cresta, entre otras. Las variables cualitativas se codificaron numéricamente según escalas cromáticas y morfológicas estandarizadas.

Los datos se organizaron en una base digital Microsoft Excel en posteriormente se procesaron con el software estadístico SPSS. El tratamiento analítico incluyó tres etapas principales, primero un análisis descriptivo, donde se calcularon frecuencias y porcientos para caracterizar los rasgos fenotípicos; segundo un análisis de correlación (Spearman) para determinar asociaciones entre las variables fenotípicas y por último un análisis multivariado, en el cual se aplicó el análisis de componentes principales (PCA) para identificar los ejes de mayor variabilidad ٧ el análisis de conglomerados jerárquico (Ward) para agrupar los individuos según similitud morfológica.

3. Resultados y discusión

La caracterización morfológica de las gallinas criollas del cantón Bolívar revela una notable diversidad fenotípica, aunque con predominio de rasgos

clásicos asociados a la adaptación tropical. El plumaje rojo fue el más frecuente tanto en hembras (67,38 %) como en machos (66,67 %), seguido de tonalidades negras, blancas y grises en menor proporción, lo que sugiere una tendencia hacia la homogeneización del color rojo como rasgo dominante en la población. La ausencia parcial de plumas en el cuello (40,43 % en hembras y 36,67 % en machos) confirma la adaptación termorreguladora de estas aves a las condiciones cálidas de Manabí, mientras que el color amarillo del tarso y del pico (presente en más del 95 % de los individuos) evidencia una fijación genética estable, posiblemente favorecida por selección natural o por preferencias productivas locales. Estos resultados difieren de los observados por Villacis et al. (2016) quienes constataron una elevada variabilidad de las características fenotípicas entre los biotipos encontrados. En cuanto al predominio del color del tarso amarillo y de cuello desnudo, los resultados coinciden con estudios similares realizados por Montes et al. (2019), Montes et al. (2022) en Colombia y por Bailón (2022) en Ecuador.

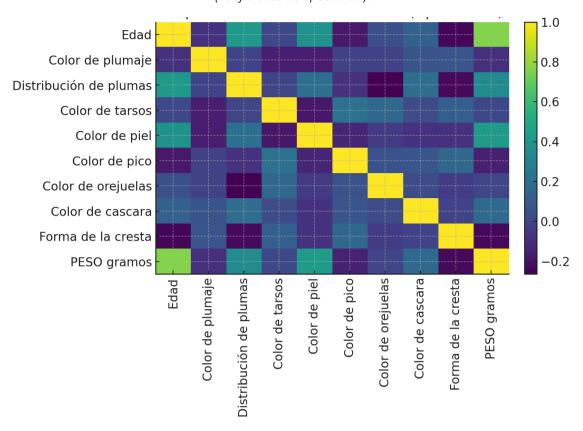
Tabla 1. Características fenotípicas de las gallinas criollas del cantón Bolívar

Característica	Clasificación	Hembras (%)	Machos (%)
Color del plumaje	Blanco	7,09	3,33
	Negro	11,35	3,33
	Rojo	67,38	66,67
	Gris	1,42	13,33
	Negro - rojo.	4,96	0,00
	Negro - blanco.	2,84	0,00
Distribución de plumas	No cuello	40,43	36,67
Color del tarso	Gris	0	3,33
	Amarillo	100	96,67
Color de la piel	Blanco	21,28	36,67
	Amarillo	78,72	63,33
Color del pico	Blanco	4,96	0,00
	Amarillo	77,30	73,33
	Negro	15,60	23,33
	Rojo	2,13	3,33
Color de orejuelas	Blanco	4,96	0
	Amarillo	77,30	73,33
	Negro	15,60	23,33
	Rojo	2,13	3,34
Color de la cáscara	Blanco	48,94	0
	Marrón	39,72	0
	Azul	17,73	0
	No aplica	14,89	0
Forma de la cresta	Simple	71,63	40,00
	Guisante	20,57	50,00
	Rosa	7,80	10,00

Asimismo, se observó una marcada diferencia en el color de la piel, la cual es amarilla en el 78,72 % de las hembras y en el 63,33 % de los machos, con mayor proporción de piel blanca en estos últimos. Esta variación podría reflejar el efecto de cruzamientos ocasionales o diferenciación por linaje, sin comprometer la identidad fenotípica de la población. En un estudio realizado por Estibel (2021) en la provincia Santa Elena

registró que el 73,3 % de las gallinas tenían la piel de color amarillo

La forma de la cresta mostró mayor variabilidad: en hembras predominó la cresta simple (71,63 %), mientras que en machos se registró una distribución más equilibrada entre las formas simple (40 %), guisante (50 %) y rosa (10 %). Este rasgo, además de su valor morfológico, actúa como marcador diferenciador entre subpoblaciones dentro del conjunto analizado.

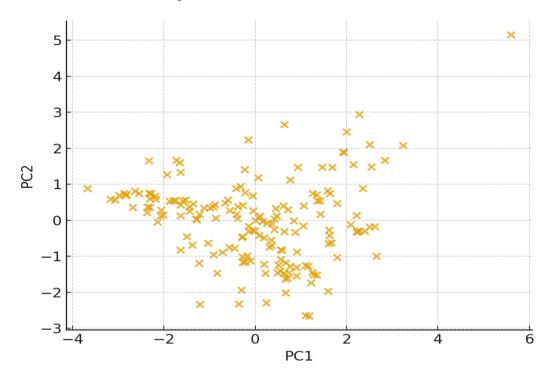

Estos resultados concuerdan con los hallazgos del análisis de componentes principales (PCA) y del análisis de conglomerados, donde las variables de peso, edad y distribución de plumas explicaron la mayor parte de la varianza (PC1), mientras que los rasgos cromáticos como color de plumaje, piel y cáscara definieron la variabilidad secundaria (PC2). El análisis jerárquico identificó tres grupos fenotípicos principales, que reflejan gradientes de edad, tamaño corporal y diversidad cromática, confirmando la existencia de una estructura poblacional interna y una base genética heterogénea.

La descripción morfológica y los análisis multivariados, que se presentan a continuación, evidencian que población de gallinas criollas del cantón Bolívar presenta una diversidad fenotípica moderada, caracterizada por una combinación de rasgos adaptativos homogéneos y variabilidad cromática diferenciadora. Este patrón confirma el valor de estas aves como recurso zoogenético local con potencial para programas de conservación, selección y mejora genética sostenible orientados al fortalecimiento de la avicultura rural en la provincia de Manabí. En este sentido, Becerril et al. (2024) reconocen que a las gallinas criollas "se les reconoce como nativas de los ecosistemas ya que han sobrevivido a condiciones alimenticias, climáticas y a enfermedades, así como a los métodos tradicionales de producción" "...sirven como una reserva genética importante para el desarrollo de razas a nivel mundial" (p. 63).

El mapa de calor generado a partir del cálculo del coeficiente de correlación de Spearman, permitió identificar relación entre las distintas características fenotípicas cuantificadas. En la Figura 1 se observa una correlación positiva entre el peso corporal y la edad (p=0,764), lo cual permite plantear que el incremento de la edad influye directamente en un mayor corporal, típico de poblaciones con crecimiento prolongado ciclos También productivos extensos. correlaciones moderadas presentan entre peso y color de la piel (p=0,429), así como entre edad y distribución de plumas (p=0,764), Lo cual pone de manifiesto que algunos caracteres morfológicos y cromáticos pueden variar conforme al grado de madurez de las aves.

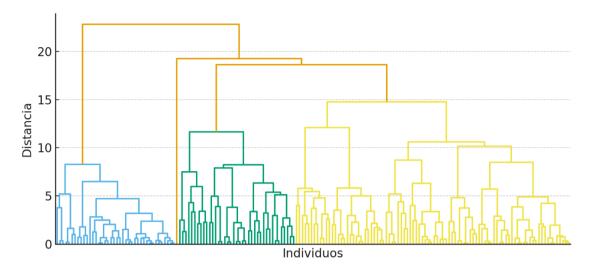
Figura 1. Mapa de calor de correlaciones fenotípicas de las gallinas criollas del cantón Bolívar (coeficiente de Spearman).

Nota. El mapa muestra la magnitud y dirección de las correlaciones entre las variables fenotípicas analizadas (edad, peso, color de plumaje, piel, pico, orejuelas, cáscara y forma de cresta). Se observan correlaciones positivas fuertes entre peso y edad, así como asociaciones moderadas entre rasgos de coloración y madurez corporal, indicando una estructura fenotípica diversa dentro de la población.


En la Figura 2 se plasma el análisis de componentes principales, el cual permite reducir la dimensionalidad del conjunto de datos en estudio, solo se muestran los ejes que la mayor variación fenotípica. El primer componente (PC1) explicó el 24,50 % de la varianza total, mientras que el segundo componente (PC2) aportó un 12,93 %, alcanzando conjuntamente un 37,43 % de la variabilidad total entre individuos.

PC1 Las mayores cargas en el correspondieron a edad (0,53), peso corporal (0,51) y distribución de plumas (0,38), por lo que este eje representa un gradiente de tamaño y madurez corporal. En cambio, el PC2 estuvo determinado principalmente por color de cáscara (0,64), color de plumaje (0,43) y color de piel (0,35), lo que refleja un gradiente de coloración fenotípica independiente de la edad. En la dispersión PC1 vs PC2 se aprecia una

amplia dispersión de individuos, lo que indica alta diversidad morfológica dentro de la población criolla evaluada, con ausencia de una diferenciación fenotípica marcada por sexo u origen.

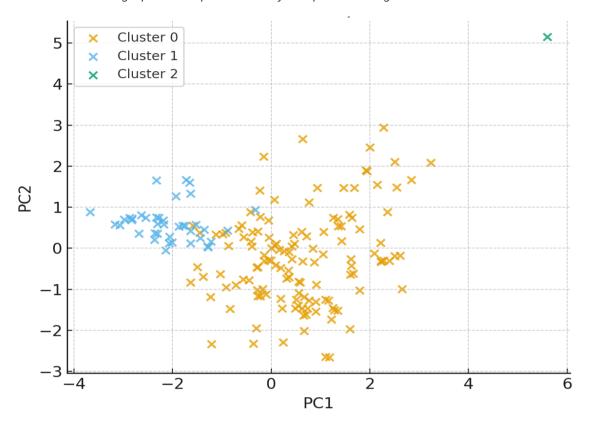

Figura 2. Dispersión de individuos según los dos primeros componentes principales (PCA) de las gallinas criollas del cantón Bolívar.

Nota. El gráfico representa la distribución de los individuos en el plano definido por los dos primeros componentes principales (PC1 y PC2), que explican conjuntamente el 37,43 % de la variabilidad total. El PC1 se asocia con las variables edad, peso y distribución de plumas, mientras que el PC2 refleja diferencias en color de cáscara, plumaje y piel. La amplia dispersión evidencia una elevada diversidad morfológica en la población.

El dendrograma generado mediante el método de Ward y distancia euclidiana de manifiesto que existen pone agrupamientos naturales dentro de la población analizada. La estructura jerárquica sugiere la presencia de tres conglomerados principales, definidos por las distancias fenotípicas entre individuos. Estos grupos representan posibles subpoblaciones o ecotipos locales de gallinas criollas, lo cual puede estar dado por causas, tales como: presiones de selección adaptativa, cruzamientos empíricos y aislamiento geográfico parcial. Las distancias interclúster reflejan variaciones considerables en rasgos de peso, color de cáscara y distribución del plumaje, lo cual supone una diversificación morfológica significativa dentro del cantón Bolívar.

Figura 3. Dendrograma jerárquico de agrupamiento fenotípico de gallinas criollas (método de Ward, distancia euclidiana).

Nota. El dendrograma ilustra la estructura jerárquica de similitud entre los individuos, obtenida mediante el método de Ward y distancia euclidiana. Se identifican tres conglomerados principales que representan posibles subpoblaciones o ecotipos locales diferenciados por características morfológicas y cromáticas, lo que sugiere una diversidad fenotípica significativa dentro de la población.


En la Figura 4 se muestra un gráfico bidimensional del PCA con identificación de clústeres, se presenta la distribución de los individuos en función de los dos componentes primeros principales, coloreados según su pertenencia al grupo (k=3). El Cluster O agrupa aves de mayor edad y peso corporal, asociadas con fenotipos más robustos; el Cluster 1 reúne individuos intermedios con una combinación equilibrada de rasgos cromáticos y biométricos; mientras que el Cluster 2 incluye aves más jóvenes y ligeras, con variabilidad marcada en los tonos de plumaje y cáscara. separación parcial entre grupos evidencia que los rasgos morfológicos y

de coloración poseen poder discriminante suficiente para diferenciar subtipos dentro de la población criolla, lo constituye un indicador cual diversidad fenotípica relevante para estrategias de conservación mejoramiento genético local. resultado coincide con el obtenido en un estudio similar de Chencha et al. (2024), quienes concluyen que: "la existencia de variabilidad morfométrica una significativa entre las poblaciones estudiadas, que podría utilizarse como una valiosa fuente de información para la cría selectiva y el uso sostenible de los pollos autóctonos, en particular para los agricultores rurales que casi dependen

de las características fenotípicas para seleccionar las existencias de cría" (p. 1).

Figura 4. Representación bidimensional del análisis de componentes principales con agrupamiento por clústeres fenotípicos de las gallinas criollas.

Nota. Los individuos se representan en función de los dos primeros componentes principales (PC1 y PC2), coloreados según su pertenencia a los tres clústeres identificados en el análisis jerárquico. El Cluster 0 agrupa aves de mayor edad y peso; el Cluster 1, aves con fenotipos intermedios; y el Cluster 2, aves jóvenes y ligeras con variabilidad cromática. Este patrón confirma la existencia de subestructuras fenotípicas dentro de la población criolla del cantón Bolívar.

4. Conclusiones

El estudio realizado permite aseverar que las gallinas criollas del cantón Bolívar presentan una diversidad fenotípica moderada, caracterizada por el predominio de rasgos clásicos asociados a su adaptación tropical: como el plumaje rojo, el tarso y pico amarillo y la cresta simple. Estos rasgos comunes en

poblaciones criollas ecuatorianas, reflejan una fijación genética estable, derivada tanto de la selección natural como de prácticas de manejo empíricas mantenidas por los productores de la localidad.

El análisis de correlación permitió identificar relaciones significativas entre variables morfológicas y biométricas,

donde se destaca la fuerte asociación entre edad y peso corporal, lo que confirma la coherencia funcional de los rasgos productivos. Las correlaciones moderadas entre características cromáticas y estructurales indican que la variabilidad fenotípica se distribuye de manera equilibrada dentro de la población.

El análisis de componentes principales permite resumir que los ejes de mayor varianza están representados por los rasgos de edad, peso y distribución de plumas, seguidos por la coloración del plumaje, piel y cáscara, que aportan a la diferenciación secundaria. El análisis de conglomerados jerárquico confirmó la existencia de tres grupos fenotípicos bien definidos, asociados a gradientes de madurez corporal V variabilidad cromática, lo cual permite plantear la presencia de subpoblaciones o ecotipos locales con potencial adaptativo diferenciado.

Los resultados confirman que la población de gallinas criollas del cantón Bolívar constituye un recurso zoogenético de alto valor, cuya conservación resulta esencial para garantizar la sostenibilidad y resiliencia de los sistemas avícolas rurales. Su

caracterización fenotípica aporta información estratégica para el diseño de programas de conservación, selección y mejoramiento genético local, orientados al fortalecimiento de la seguridad alimentaria y la identidad agropecuaria de la provincia de Manabí.

Bibliografía

Bailón Mendoza, B. A. (2022). Aspectos generales y situación actual de gallinas criollas de la Península de Santa Elena. Universidad Estatal Península de Santa Elena. La Libertad, Ecuador. https://repositorio.upse.edu.ec/i tems/7fc7f454-185c-4813-9aa2-420ac37c1cd9

Becerril Pérez, C. M., Chico Jiménez, L., & Zárate Contreras, D. (2024). El papel vital de las gallinas criollas. Agro-Divulgación, 4(4). https://doi.org/10.54767/ad.v4i 4.351

Chencha Ch., Aberra M., & Simret B. (2024). Quantifying phenotypic variability of indigenous chickens using morphometric traits by applying multivariate analysis: Input for sustainable rural chicken farming. Heliyon, 10, (21), e39850. https://doi.org/10.1016/j.heliyo n.2024.e39850.

Cuca García, J. Gutiérrez Arenas D.A., & López Pérez E. (2018). La avicultura de traspatio en

México: Historia y caracterización. Agro Productividad, 8(4). 30-36. https://revista-groproductividad.org/index.php/agroproductividad/article/view/669

- Estibel M., H. F. (2021). Caracterización morfométrica y faneróptica de gallinas criollas Gallus domesticus traspatios en familiares del pueblo kichwa Rukullacta de la provincia de Napo. Universidad Península de Santa Elena. La Libertad. Ecuador. https://repositorio.upse.edu.ec/i tems/132ee1ee-12c8-4601bda3-5b8c13124bdb
- Guelber Sales, M.N. (2005). Criação de galinhas em sistemas agroecológicos. Instituto Capixaba de pesquisa, Asisténcia e Extensao Rural. DCM Incaper, 183.

 https://biblioteca.incaper.es.gov
 .br/digital/bitstream/item/791/1
 /livrocriacaodegalinhamarciasale s.pdf
- Instituto Nacional de Meteorología e Hidrología [INAMHI] (2025). Boletín de predicción climática, febrero – abril, 02. 5-7. https://servicios.inamhi.gob.ec/c lima/
- Luis Chincoya, H., Herrera Haro, J. G., Jerez Salas, M. P., Santacruz Varela, A., & Hernández-Garay, A. (2018). Tipología de gallinas

criollas en Valles Centrales
Oaxaca con base en descriptores
morfométricos. Agricultura,
sociedad y desarrollo, 15(4), 585593.
http://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S18
7054722018000400585&Ing=es&tl

Montes Vergara, D., de la Ossa V, J., & Hernández H, D. (2019). Caracterización morfológica de la gallina criolla de traspatio de la subregión sabana departamento de Sucre (Colombia). Revista MVZ Córdoba, 24(2), 7218-7224. https://doi.org/10.21897/rmvz.1 646

ng=es.

- Montes Vergara, D., Hernández Herrera, D., & Carrillo González, D. (2022). Caracterización morfológica, faneróptica y de genes dominantes de la gallina criolla nudicollis en Sucre, Colombia. Rev MVZ Córdoba, 27(1), e2599. https://doi.org/10.21897/rmvz.2599
- Oñate Mancero, F. J., Villafuerte Gavilanes, A. A., & Bravo Calle, O. E. (2020). Calidad de huevos de gallinas criollas criadas en traspatio en Macas, Ecuador. Dominio de las Ciencias. 6(3) 662-673. https://doi.org/10.23857/DC.V6l 3.1307
- Pérez Ramírez, E., González Martínez, D., Díaz Ruiz, R., Escobedo Garrido, J.

S., Contreras Ramos, J., Améndola Massiotti, R. D. (2023). Avicultura de traspatio en las familias participantes del programa pesa (FAO) en Cuetzalan del Progreso, Puebla. Agricultura, Sociedad Desarrollo, 21(1), 64-83. https://doi.org/10.22231/asyd.v 21i1.1595

Soglia, D., Sartore, S., Lasagna, E., Castellini, C., Cendron, F., Perini, F., Cassandro, M., Marzoni, M., Iaffaldano, N., Buccioni, A., Dabbou, S., Castillo, A., Maione, S., Bianchi, C., Profiti, M., Sacchi, P., Cerolini, S., & Schiavone, A. (2021). Genetic diversity of 17 autochthonous italian chicken breeds and their extinction risk status. Frontiers in genetics, 12, 715656. https://doi.org/10.3389/fgene.2 021.715656

Toalombo Vargas, P. A., Navas González, F. J., Landi, V., León Jurado, J. M., & Delgado Bermejo, J. V. (2020). Sexual dimorphism and breed characterization of creole hens through biometric canonical discriminant analysis across Ecuadorian agroecological areas. Animals, 32. 10(1), https://doi.org/10.3390/ani1001 0032

Valencia Ll, N.F., Betancourth, L. F., Muñoz J. E., J., Valencia Ll, A. y Santos, E. (1990). Origen, desarrollo, y descripción de los tipos de gallina "criolla" existentes en varios municipios del Valle del Cauca. Universidad Nacional de Colombia Sede Palmira. 40(1-2), 187-195. https://repositorio.unal.edu.co/ handle/unal/29417

Villacís Rivas, G., Escudero Sánchez, G., Cueva Castillo, F. y Luzuriaga Neira, A. (2016). Características morfométricas de las gallinas criollas de comunidades rurales del sur del Ecuador. Revista de Investigaciones Veterinarias del Perú, 27(2), 218-224. https://doi.org/10.15381/rivep.v 27i2.11639