Revista de Ciencias Agropecuarias ‘‘ALLPA’’: Vol. 8 (Núm. 16) (jul-dic 2025). ISSN: 2600-5883.
Burgos-García et al. (2025)
Engine
Environmental Modelling
Software, 183, 106227.
https://doi.org/https://doi.org/1
.1016/j.envsoft.2024.106227
data
catalog.
Schindler, K., & Wegner, J. D.
(2023). Cocoa plantations are
associated with deforestation in
Côte d’Ivoire and Ghana. Nature
&
0
Food, 384–393.
https://doi.org/10.1038/s43016-
23-00751-8
4(5),
Enogieru, A. B., & Idemudia, O. U. (2024).
Comparative protective activity
of aqueous Zingiber officinale
root and Theobroma cacao seed
extracts on lead acetate-induced
cerebellar toxicity in rats. Journal
of Trace Elements and Minerals,
0
Kamath, V., Sassen, M., Arnell, A., van
Soesbergen, A., & Bunn, C.
(2024). Identifying areas where
biodiversity is at risk from
potential cocoa expansion in the
1
0,
https://doi.org/https://doi.org/1
.1016/j.jtemin.2024.100190
100190.
Congo
Basin.
Agriculture,
Ecosystems & Environment, 376,
109216.
0
https://doi.org/https://doi.org/1
Foster, K. A., Suarez-Guzman, L. M.,
Meza-Sepulveda, D. C.,
Baributsa, D., & Zurita, C. A.
2024). Effects of alternative
0.1016/j.agee.2024.109216
Kanmegne Tamga, D., Latifi, H., Ullmann,
T., Baumhauer, R., Thiel, M., &
Bayala, J. (2023). Modelling the
spatial distribution of the
classification error of remote
(
hermetic bag storage on
fermented and dried cocoa bean
(
Theobroma cacao L.). Journal of
Stored Products Research, 107,
02351.
https://doi.org/https://doi.org/1
.1016/j.jspr.2024.102351
sensing
data
in
cocoa
1
agroforestry
systems.
Agroforestry Systems, 97(1),
109–119.
0
https://doi.org/10.1007/s10457-
Kalecinski, N. I., Skakun, S., Torbick, N.,
Huang, X., Franch, B., Roger, J.-C.,
022-00791-2
&
Vermote, E. (2024). Crop yield
Lei, Z., & Lei, T. L. (2024). Large-scale
integration of remotely sensed
and GIS road networks: A full
estimation at different growing
stages using a synergy of SAR and
optical remote sensing data.
Science of Remote Sensing, 10,
image-vector
conflation
approach based on optimization
and deep learning. Computers,
Environment and Urban Systems,
113, 102174.
https://doi.org/https://doi.org/1
1
00153.
https://doi.org/https://doi.org/1
.1016/j.srs.2024.100153
0
Kalischek, N., Lang, N., Renier, C., Daudt,
R. C., Addoah, T., Thompson, W.,
Blaser-Hart, W. J., Garrett, R.,
0
0
.1016/j.compenvurbsys.2024.1
2174
100